Whitehead积与无穷和的恒等式

IF 0.6 4区 数学 Q3 MATHEMATICS
Jeremy Brazas
{"title":"Whitehead积与无穷和的恒等式","authors":"Jeremy Brazas","doi":"10.1016/j.topol.2025.109232","DOIUrl":null,"url":null,"abstract":"<div><div>Whitehead products and natural infinite sums are prominent in the higher homotopy groups of the <em>n</em>-dimensional infinite earring space <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and other locally complicated Peano continua. In this paper, we derive general identities for how these operations interact with each other. As an application, we consider a shrinking wedge <figure><img></figure> of finite <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-connected CW-complexes and compute the infinite-sum closure <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of the set of Whitehead products <span><math><mo>[</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>]</mo></math></span> in <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> where <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> are represented in respective sub-wedges that meet only at the basepoint. In particular, we show that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is canonically isomorphic to <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>⊗</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>&gt;</mo><mi>j</mi></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>)</mo></mrow></math></span>. The insight provided by this computation motivates a conjecture about the isomorphism type of the elusive groups <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"362 ","pages":"Article 109232"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identities for Whitehead products and infinite sums\",\"authors\":\"Jeremy Brazas\",\"doi\":\"10.1016/j.topol.2025.109232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Whitehead products and natural infinite sums are prominent in the higher homotopy groups of the <em>n</em>-dimensional infinite earring space <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and other locally complicated Peano continua. In this paper, we derive general identities for how these operations interact with each other. As an application, we consider a shrinking wedge <figure><img></figure> of finite <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-connected CW-complexes and compute the infinite-sum closure <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of the set of Whitehead products <span><math><mo>[</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>]</mo></math></span> in <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> where <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> are represented in respective sub-wedges that meet only at the basepoint. In particular, we show that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is canonically isomorphic to <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>⊗</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>&gt;</mo><mi>j</mi></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>)</mo></mrow></math></span>. The insight provided by this computation motivates a conjecture about the isomorphism type of the elusive groups <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"362 \",\"pages\":\"Article 109232\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125000306\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125000306","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在n维无限耳环空间En和其他局部复杂Peano连续体的高同伦群中,Whitehead积和自然无穷和是突出的。在本文中,我们推导了这些操作如何相互作用的一般恒等式。作为应用,我们考虑了有限(n−1)连通的cw -配合物的一个收缩楔,并计算了π - 2n−1(X)中Whitehead积[α,β]集合的无穷和闭包W2n−1(X),其中α,β∈πn(X)分别表示在各自的子楔中,子楔只在基点处相交。特别地,我们证明了W2n−1(X)与∏j=1∞(πn(Xj)⊗∏k>jπn(Xk))是正则同构的。这个计算提供的洞察力激发了一个关于难以捉摸群π2n−1(En), n≥2的同构类型的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identities for Whitehead products and infinite sums
Whitehead products and natural infinite sums are prominent in the higher homotopy groups of the n-dimensional infinite earring space En and other locally complicated Peano continua. In this paper, we derive general identities for how these operations interact with each other. As an application, we consider a shrinking wedge
of finite (n1)-connected CW-complexes and compute the infinite-sum closure W2n1(X) of the set of Whitehead products [α,β] in π2n1(X) where α,βπn(X) are represented in respective sub-wedges that meet only at the basepoint. In particular, we show that W2n1(X) is canonically isomorphic to j=1(πn(Xj)k>jπn(Xk)). The insight provided by this computation motivates a conjecture about the isomorphism type of the elusive groups π2n1(En), n2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信