Siyu Tang, Hongbo Shi, Bing Song, Yang Tao, Shuai Tan
{"title":"基于物理一致性wgan的工业过程小样本故障诊断","authors":"Siyu Tang, Hongbo Shi, Bing Song, Yang Tao, Shuai Tan","doi":"10.1016/j.cjche.2024.10.028","DOIUrl":null,"url":null,"abstract":"<div><div>In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"78 ","pages":"Pages 163-174"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physically-consistent-WGAN based small sample fault diagnosis for industrial processes\",\"authors\":\"Siyu Tang, Hongbo Shi, Bing Song, Yang Tao, Shuai Tan\",\"doi\":\"10.1016/j.cjche.2024.10.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":\"78 \",\"pages\":\"Pages 163-174\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124003987\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124003987","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Physically-consistent-WGAN based small sample fault diagnosis for industrial processes
In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.