关于MM-ω-平衡和FR(Fm)-可因子半(para)拓扑群

IF 0.6 4区 数学 Q3 MATHEMATICS
Liang-Xue Peng, Yu-Ming Deng
{"title":"关于MM-ω-平衡和FR(Fm)-可因子半(para)拓扑群","authors":"Liang-Xue Peng,&nbsp;Yu-Ming Deng","doi":"10.1016/j.topol.2024.109183","DOIUrl":null,"url":null,"abstract":"<div><div>In the second part of this article, we introduce a notion which is called <em>MM</em>-<em>ω</em>-balancedness in the class of semitopological groups. We show that if <em>G</em> is a semitopological (paratopological) group, then <em>G</em> is topologically isomorphic to a subgroup of the product of a family of metacompact Moore semitopological (paratopological) groups if and only if <em>G</em> is regular <em>MM</em>-<em>ω</em>-balanced and <span><math><mi>I</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>ω</mi></math></span>. If <em>G</em> is a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> <em>bM</em>-<em>ω</em>-balanced semitopological group and <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> is an open continuous homomorphism of <em>G</em> onto a first-countable semitopological group <em>H</em> such that <span><math><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is a countably compact subgroup of <em>G</em>, then <em>H</em> is a metacompact developable space.</div><div>In the third part of this article, we introduce notions of <span><math><mi>F</mi><mi>R</mi></math></span>-factorizability and <span><math><mi>F</mi><mi>m</mi></math></span>-factorizability. We give some equivalent conditions that a semitopological (paratopological) group is <span><math><mi>F</mi><mi>R</mi></math></span>-factorizable or <span><math><mi>F</mi><mi>m</mi></math></span>-factorizable. If <em>G</em> is a Tychonoff <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable semitopological group and <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> is a continuous open homomorphism of <em>G</em> onto a semitopological group <em>H</em>, then <em>H</em> is <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable. If <em>G</em> is a <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable paratopological group and <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> is a continuous <em>d</em>-open homomorphism of <em>G</em> onto a paratopological group <em>H</em>, then <em>H</em> is <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"360 ","pages":"Article 109183"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On MM-ω-balancedness and FR(Fm)-factorizable semi(para)topological groups\",\"authors\":\"Liang-Xue Peng,&nbsp;Yu-Ming Deng\",\"doi\":\"10.1016/j.topol.2024.109183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the second part of this article, we introduce a notion which is called <em>MM</em>-<em>ω</em>-balancedness in the class of semitopological groups. We show that if <em>G</em> is a semitopological (paratopological) group, then <em>G</em> is topologically isomorphic to a subgroup of the product of a family of metacompact Moore semitopological (paratopological) groups if and only if <em>G</em> is regular <em>MM</em>-<em>ω</em>-balanced and <span><math><mi>I</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>ω</mi></math></span>. If <em>G</em> is a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> <em>bM</em>-<em>ω</em>-balanced semitopological group and <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> is an open continuous homomorphism of <em>G</em> onto a first-countable semitopological group <em>H</em> such that <span><math><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is a countably compact subgroup of <em>G</em>, then <em>H</em> is a metacompact developable space.</div><div>In the third part of this article, we introduce notions of <span><math><mi>F</mi><mi>R</mi></math></span>-factorizability and <span><math><mi>F</mi><mi>m</mi></math></span>-factorizability. We give some equivalent conditions that a semitopological (paratopological) group is <span><math><mi>F</mi><mi>R</mi></math></span>-factorizable or <span><math><mi>F</mi><mi>m</mi></math></span>-factorizable. If <em>G</em> is a Tychonoff <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable semitopological group and <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> is a continuous open homomorphism of <em>G</em> onto a semitopological group <em>H</em>, then <em>H</em> is <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable. If <em>G</em> is a <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable paratopological group and <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> is a continuous <em>d</em>-open homomorphism of <em>G</em> onto a paratopological group <em>H</em>, then <em>H</em> is <span><math><mi>F</mi><mi>R</mi></math></span> (<span><math><mi>F</mi><mi>m</mi></math></span>)-factorizable.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"360 \",\"pages\":\"Article 109183\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124003687\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003687","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文的第二部分,我们在半拓扑群类中引入了一个叫做MM-ω-平衡的概念。证明了如果G是半拓扑(准拓扑)群,则当且仅当G是正则MM-ω平衡且Ir(G)≤ω时,G拓扑同构于一群元紧摩尔半拓扑(准拓扑)群的乘积的子群。若G是一个T0 bM-ω平衡半拓扑群,且f:G→H是G在第一可数半拓扑群H上的开连续同态,使得ker (f)是G的可数紧子群,则H是一个元紧可展空间。在本文的第三部分,我们引入了fr -可分解性和fm -可分解性的概念。给出了半拓扑(准拓扑)群是fr可因子或fm可因子的一些等价条件。若G是Tychonoff FR (Fm)可因子半拓扑群,且f:G→H是G在半拓扑群H上的连续开同态,则H是FR (Fm)可因子。若G是FR (Fm)可分解的准拓扑群,且f:G→H是G在准拓扑群H上的连续d开同态,则H是FR (Fm)可分解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On MM-ω-balancedness and FR(Fm)-factorizable semi(para)topological groups
In the second part of this article, we introduce a notion which is called MM-ω-balancedness in the class of semitopological groups. We show that if G is a semitopological (paratopological) group, then G is topologically isomorphic to a subgroup of the product of a family of metacompact Moore semitopological (paratopological) groups if and only if G is regular MM-ω-balanced and Ir(G)ω. If G is a T0 bM-ω-balanced semitopological group and f:GH is an open continuous homomorphism of G onto a first-countable semitopological group H such that ker(f) is a countably compact subgroup of G, then H is a metacompact developable space.
In the third part of this article, we introduce notions of FR-factorizability and Fm-factorizability. We give some equivalent conditions that a semitopological (paratopological) group is FR-factorizable or Fm-factorizable. If G is a Tychonoff FR (Fm)-factorizable semitopological group and f:GH is a continuous open homomorphism of G onto a semitopological group H, then H is FR (Fm)-factorizable. If G is a FR (Fm)-factorizable paratopological group and f:GH is a continuous d-open homomorphism of G onto a paratopological group H, then H is FR (Fm)-factorizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信