Aron Rodrick Lakra , Sneha Gautam , Cyril Samuel , Robert Blaga
{"title":"印度城市大学巴士通勤者对空气污染物的暴露:城乡交通暴露研究","authors":"Aron Rodrick Lakra , Sneha Gautam , Cyril Samuel , Robert Blaga","doi":"10.1016/j.geogeo.2024.100346","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes air quality along the Kavundampalayam transit route and across three urban regions in Coimbatore, India – Kavundampalayam, Ganapathy and Kovaiputhur – over five days during morning and evening commutes. Key pollutants monitored include PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>, CO<sub>2</sub>, formaldehyde (HCHO), and the Air Quality Index (AQI). Results show that PM<sub>2.5</sub> levels often exceeded the WHO's 24-hour limit, with Kovaiputhur peaking at 120.33 µg/m³ and PM<sub>10</sub> concentrations reaching 259.08 µg/m³ in Kavundampalayam. CO<sub>2</sub> levels varied significantly, with Ganapathy recording the highest at 1942.42 ppm, indicating traffic and industrial sources. Morning commutes exhibited higher PM levels due to vehicular emissions, while evenings showed reduced pollution. HCHO concentrations, though low (<0.023 mg/m³), spiked in the evenings, suggesting emission sources later in the day. A strong correlation between CO<sub>2</sub> and AQI underscores the impact of anthropogenic activities on air quality. The study identifies pollution hotspots using heatmaps and temporal patterns, emphasizing the need for interventions like emission control, dust regulation, and green infrastructure. Continuous air quality monitoring is essential for sustainable urban planning, helping policymakers design strategies to reduce exposure risks and improve public health.</div></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"4 1","pages":"Article 100346"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"College bus commuter exposures to air pollutants in Indian city: The urban-rural transportation exposure study\",\"authors\":\"Aron Rodrick Lakra , Sneha Gautam , Cyril Samuel , Robert Blaga\",\"doi\":\"10.1016/j.geogeo.2024.100346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study analyzes air quality along the Kavundampalayam transit route and across three urban regions in Coimbatore, India – Kavundampalayam, Ganapathy and Kovaiputhur – over five days during morning and evening commutes. Key pollutants monitored include PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>, CO<sub>2</sub>, formaldehyde (HCHO), and the Air Quality Index (AQI). Results show that PM<sub>2.5</sub> levels often exceeded the WHO's 24-hour limit, with Kovaiputhur peaking at 120.33 µg/m³ and PM<sub>10</sub> concentrations reaching 259.08 µg/m³ in Kavundampalayam. CO<sub>2</sub> levels varied significantly, with Ganapathy recording the highest at 1942.42 ppm, indicating traffic and industrial sources. Morning commutes exhibited higher PM levels due to vehicular emissions, while evenings showed reduced pollution. HCHO concentrations, though low (<0.023 mg/m³), spiked in the evenings, suggesting emission sources later in the day. A strong correlation between CO<sub>2</sub> and AQI underscores the impact of anthropogenic activities on air quality. The study identifies pollution hotspots using heatmaps and temporal patterns, emphasizing the need for interventions like emission control, dust regulation, and green infrastructure. Continuous air quality monitoring is essential for sustainable urban planning, helping policymakers design strategies to reduce exposure risks and improve public health.</div></div>\",\"PeriodicalId\":100582,\"journal\":{\"name\":\"Geosystems and Geoenvironment\",\"volume\":\"4 1\",\"pages\":\"Article 100346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystems and Geoenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772883824000967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883824000967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
College bus commuter exposures to air pollutants in Indian city: The urban-rural transportation exposure study
This study analyzes air quality along the Kavundampalayam transit route and across three urban regions in Coimbatore, India – Kavundampalayam, Ganapathy and Kovaiputhur – over five days during morning and evening commutes. Key pollutants monitored include PM1, PM2.5, PM10, CO2, formaldehyde (HCHO), and the Air Quality Index (AQI). Results show that PM2.5 levels often exceeded the WHO's 24-hour limit, with Kovaiputhur peaking at 120.33 µg/m³ and PM10 concentrations reaching 259.08 µg/m³ in Kavundampalayam. CO2 levels varied significantly, with Ganapathy recording the highest at 1942.42 ppm, indicating traffic and industrial sources. Morning commutes exhibited higher PM levels due to vehicular emissions, while evenings showed reduced pollution. HCHO concentrations, though low (<0.023 mg/m³), spiked in the evenings, suggesting emission sources later in the day. A strong correlation between CO2 and AQI underscores the impact of anthropogenic activities on air quality. The study identifies pollution hotspots using heatmaps and temporal patterns, emphasizing the need for interventions like emission control, dust regulation, and green infrastructure. Continuous air quality monitoring is essential for sustainable urban planning, helping policymakers design strategies to reduce exposure risks and improve public health.