用于人工视觉的ZnO光电忆阻器传感器内降噪和储层计算系统

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Liang Wang, Le Zhang, Shuaibin Hua, Anran Chen, Qiuyun Fu* and Xin Guo*, 
{"title":"用于人工视觉的ZnO光电忆阻器传感器内降噪和储层计算系统","authors":"Liang Wang,&nbsp;Le Zhang,&nbsp;Shuaibin Hua,&nbsp;Anran Chen,&nbsp;Qiuyun Fu* and Xin Guo*,&nbsp;","doi":"10.1021/acsaelm.4c0168210.1021/acsaelm.4c01682","DOIUrl":null,"url":null,"abstract":"<p >Rapid advancements in artificial intelligence (AI) and the Internet of Things (IoT) demand more efficient data processing than conventional von Neumann architectures offer. In-sensor reservoir computing (RC) addresses this by enabling data processing directly within sensors. Optoelectronic memristors, capable of responding to both electrical and optical inputs, have emerged as a promising solution. We present electronic neurons and opto-synapses made of Pt/Ag/ZnO/Pt/Ti memristors, demonstrating stable threshold switching (with cumulative probability variations of 5.06% for <i>V</i><sub>th</sub>) and neuron functions (such as spike encoding and LIF behavior) under electrical stimuli, as well as light-tunable synaptic behaviors (including PPF and STM). This enables the device to perform image sensing and noise reduction. Moreover, we propose an in-sensor noise reduction and RC system that emulates the human vision system, achieving high-precision classification (99.33%) of noisy images. This system offers cost-effective training and efficient processing of optical stimuli, opening innovative avenues for edge computing and machine vision applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 12","pages":"9019–9028 9019–9028"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Sensor Noise Reduction and Reservoir Computing System Using ZnO Optoelectronic Memristors for Artificial Vision Applications\",\"authors\":\"Liang Wang,&nbsp;Le Zhang,&nbsp;Shuaibin Hua,&nbsp;Anran Chen,&nbsp;Qiuyun Fu* and Xin Guo*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c0168210.1021/acsaelm.4c01682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rapid advancements in artificial intelligence (AI) and the Internet of Things (IoT) demand more efficient data processing than conventional von Neumann architectures offer. In-sensor reservoir computing (RC) addresses this by enabling data processing directly within sensors. Optoelectronic memristors, capable of responding to both electrical and optical inputs, have emerged as a promising solution. We present electronic neurons and opto-synapses made of Pt/Ag/ZnO/Pt/Ti memristors, demonstrating stable threshold switching (with cumulative probability variations of 5.06% for <i>V</i><sub>th</sub>) and neuron functions (such as spike encoding and LIF behavior) under electrical stimuli, as well as light-tunable synaptic behaviors (including PPF and STM). This enables the device to perform image sensing and noise reduction. Moreover, we propose an in-sensor noise reduction and RC system that emulates the human vision system, achieving high-precision classification (99.33%) of noisy images. This system offers cost-effective training and efficient processing of optical stimuli, opening innovative avenues for edge computing and machine vision applications.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 12\",\"pages\":\"9019–9028 9019–9028\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01682\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01682","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)和物联网(IoT)的快速发展要求比传统的冯·诺伊曼架构提供更有效的数据处理。传感器内储层计算(RC)通过直接在传感器内处理数据来解决这个问题。光电忆阻器,能够响应电和光输入,已经成为一个有前途的解决方案。我们展示了由Pt/Ag/ZnO/Pt/Ti忆阻器制成的电子神经元和光突触,在电刺激下表现出稳定的阈值开关(Vth的累积概率变化为5.06%)和神经元功能(如尖峰编码和LIF行为),以及光可调的突触行为(包括PPF和STM)。这使设备能够执行图像传感和降噪。此外,我们提出了一种模拟人类视觉系统的传感器内降噪和RC系统,实现了对噪声图像的高精度分类(99.33%)。该系统提供了具有成本效益的培训和有效的光学刺激处理,为边缘计算和机器视觉应用开辟了创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-Sensor Noise Reduction and Reservoir Computing System Using ZnO Optoelectronic Memristors for Artificial Vision Applications

In-Sensor Noise Reduction and Reservoir Computing System Using ZnO Optoelectronic Memristors for Artificial Vision Applications

Rapid advancements in artificial intelligence (AI) and the Internet of Things (IoT) demand more efficient data processing than conventional von Neumann architectures offer. In-sensor reservoir computing (RC) addresses this by enabling data processing directly within sensors. Optoelectronic memristors, capable of responding to both electrical and optical inputs, have emerged as a promising solution. We present electronic neurons and opto-synapses made of Pt/Ag/ZnO/Pt/Ti memristors, demonstrating stable threshold switching (with cumulative probability variations of 5.06% for Vth) and neuron functions (such as spike encoding and LIF behavior) under electrical stimuli, as well as light-tunable synaptic behaviors (including PPF and STM). This enables the device to perform image sensing and noise reduction. Moreover, we propose an in-sensor noise reduction and RC system that emulates the human vision system, achieving high-precision classification (99.33%) of noisy images. This system offers cost-effective training and efficient processing of optical stimuli, opening innovative avenues for edge computing and machine vision applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信