用于共源放大电路的高频高增益分栅单层MoS2场效应晶体管

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaojie Tang, Xueping Li, Zhuojun Wang, Peize Yuan, Chenhai Shen, Jianye Wang and Congxin Xia*, 
{"title":"用于共源放大电路的高频高增益分栅单层MoS2场效应晶体管","authors":"Xiaojie Tang,&nbsp;Xueping Li,&nbsp;Zhuojun Wang,&nbsp;Peize Yuan,&nbsp;Chenhai Shen,&nbsp;Jianye Wang and Congxin Xia*,&nbsp;","doi":"10.1021/acsaelm.4c0149210.1021/acsaelm.4c01492","DOIUrl":null,"url":null,"abstract":"<p >For analog systems, the field effect transistor (FET) is regarded as one of the fundamental electronic devices. However, its small gain restricts the application of FET in amplifiers and analog circuits. Here, we design a split-gate FET based on monolayer MoS<sub>2</sub> and optimize the key performance index of intrinsic gain (<i>A</i><sub>v0</sub>), transconductance frequency product (TFP), and gain frequency product (GFP). The maximum <i>A</i><sub>v0</sub> of 293 V/V and cutoff frequency of hundreds of GHz are obtained by optimizing the control gate positions and input gate voltage. With an equivalent oxide thickness of 0.3 nm, the FET possesses a superior TFP of 7657 GHz/V and GFP of 14148 GHz. In particular, a common source amplifier circuit utilizing the split-gate FET is established, achieving the largest circuit gain of approximately 277 V/V. This work provides a promising route to use split-gate FET to realize a common source amplifier circuit with high circuit gain.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 12","pages":"8804–8810 8804–8810"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Frequency and High Gain Split-Gate Monolayer MoS2 Field Effect Transistor for Common Source Amplifier Circuit\",\"authors\":\"Xiaojie Tang,&nbsp;Xueping Li,&nbsp;Zhuojun Wang,&nbsp;Peize Yuan,&nbsp;Chenhai Shen,&nbsp;Jianye Wang and Congxin Xia*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c0149210.1021/acsaelm.4c01492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >For analog systems, the field effect transistor (FET) is regarded as one of the fundamental electronic devices. However, its small gain restricts the application of FET in amplifiers and analog circuits. Here, we design a split-gate FET based on monolayer MoS<sub>2</sub> and optimize the key performance index of intrinsic gain (<i>A</i><sub>v0</sub>), transconductance frequency product (TFP), and gain frequency product (GFP). The maximum <i>A</i><sub>v0</sub> of 293 V/V and cutoff frequency of hundreds of GHz are obtained by optimizing the control gate positions and input gate voltage. With an equivalent oxide thickness of 0.3 nm, the FET possesses a superior TFP of 7657 GHz/V and GFP of 14148 GHz. In particular, a common source amplifier circuit utilizing the split-gate FET is established, achieving the largest circuit gain of approximately 277 V/V. This work provides a promising route to use split-gate FET to realize a common source amplifier circuit with high circuit gain.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 12\",\"pages\":\"8804–8810 8804–8810\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01492\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01492","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在模拟系统中,场效应晶体管(FET)被认为是基本的电子器件之一。然而,它的小增益限制了FET在放大器和模拟电路中的应用。在此,我们设计了一个基于单层MoS2的分栅场效应管,并优化了本征增益(Av0)、跨导频率积(TFP)和增益频率积(GFP)的关键性能指标。通过优化控制栅极位置和输入栅极电压,得到最大Av0为293 V/V,截止频率为数百GHz。等效氧化层厚度为0.3 nm, TFP为7657 GHz/V, GFP为14148 GHz。特别地,利用分栅场效应管建立了一个共源放大电路,实现了大约277 V/V的最大电路增益。本工作为利用分栅场效应管实现高电路增益的共源放大电路提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Frequency and High Gain Split-Gate Monolayer MoS2 Field Effect Transistor for Common Source Amplifier Circuit

High Frequency and High Gain Split-Gate Monolayer MoS2 Field Effect Transistor for Common Source Amplifier Circuit

For analog systems, the field effect transistor (FET) is regarded as one of the fundamental electronic devices. However, its small gain restricts the application of FET in amplifiers and analog circuits. Here, we design a split-gate FET based on monolayer MoS2 and optimize the key performance index of intrinsic gain (Av0), transconductance frequency product (TFP), and gain frequency product (GFP). The maximum Av0 of 293 V/V and cutoff frequency of hundreds of GHz are obtained by optimizing the control gate positions and input gate voltage. With an equivalent oxide thickness of 0.3 nm, the FET possesses a superior TFP of 7657 GHz/V and GFP of 14148 GHz. In particular, a common source amplifier circuit utilizing the split-gate FET is established, achieving the largest circuit gain of approximately 277 V/V. This work provides a promising route to use split-gate FET to realize a common source amplifier circuit with high circuit gain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信