石墨烯准晶体中的准周期配对

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rasoul Ghadimi,  and , Bohm-Jung Yang*, 
{"title":"石墨烯准晶体中的准周期配对","authors":"Rasoul Ghadimi,&nbsp; and ,&nbsp;Bohm-Jung Yang*,&nbsp;","doi":"10.1021/acs.nanolett.4c0438610.1021/acs.nanolett.4c04386","DOIUrl":null,"url":null,"abstract":"<p >We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors. This is because, particularly near the charge neutrality point of the TBGQC, the two layers are weekly coupled, leading to pairing instabilities with a uniform distribution in real space. On the other hand, within the QER, the inhomogeneous distribution of the LDOS enhances the superconducting instability with a nonuniform distribution of pairing amplitudes, leading to quasiperiodic superconductivity. Our study can qualitatively explain the superconductivity in recently discovered moiré quasicrystals, which show superconductivity in their QER.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 5","pages":"1808–1815 1808–1815"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasiperiodic Pairing in Graphene Quasicrystals\",\"authors\":\"Rasoul Ghadimi,&nbsp; and ,&nbsp;Bohm-Jung Yang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0438610.1021/acs.nanolett.4c04386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors. This is because, particularly near the charge neutrality point of the TBGQC, the two layers are weekly coupled, leading to pairing instabilities with a uniform distribution in real space. On the other hand, within the QER, the inhomogeneous distribution of the LDOS enhances the superconducting instability with a nonuniform distribution of pairing amplitudes, leading to quasiperiodic superconductivity. Our study can qualitatively explain the superconductivity in recently discovered moiré quasicrystals, which show superconductivity in their QER.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 5\",\"pages\":\"1808–1815 1808–1815\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04386\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04386","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两层单层石墨烯片以30°相对扭转堆叠获得的扭曲双层石墨烯准晶体(tbgqc)的超导不稳定性。TBGQC的电子能谱包含周期能量程(PERs)和准周期能量程(QERs),其中局域态密度(LDOS)分别表现为周期和准周期分布。我们发现PER中的超导性是两个单层超导体的简单叠加。这是因为,特别是在TBGQC的电荷中性点附近,两层每周耦合,导致在实际空间中具有均匀分布的配对不稳定性。另一方面,在量子阱内,LDOS的不均匀分布增强了超导的不稳定性,导致配对振幅的不均匀分布,从而导致准周期超导。我们的研究可以定性地解释最近发现的moir准晶体的超导性,这些准晶体在量子阱中表现出超导性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasiperiodic Pairing in Graphene Quasicrystals

Quasiperiodic Pairing in Graphene Quasicrystals

We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors. This is because, particularly near the charge neutrality point of the TBGQC, the two layers are weekly coupled, leading to pairing instabilities with a uniform distribution in real space. On the other hand, within the QER, the inhomogeneous distribution of the LDOS enhances the superconducting instability with a nonuniform distribution of pairing amplitudes, leading to quasiperiodic superconductivity. Our study can qualitatively explain the superconductivity in recently discovered moiré quasicrystals, which show superconductivity in their QER.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信