密度泛函理论中的容噪力计算:基于小波方法的表面积分方法

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Moritz Gubler*, Jonas A. Finkler, Stig Rune Jensen, Stefan Goedecker and Luca Frediani*, 
{"title":"密度泛函理论中的容噪力计算:基于小波方法的表面积分方法","authors":"Moritz Gubler*,&nbsp;Jonas A. Finkler,&nbsp;Stig Rune Jensen,&nbsp;Stefan Goedecker and Luca Frediani*,&nbsp;","doi":"10.1021/acs.jpca.4c0670810.1021/acs.jpca.4c06708","DOIUrl":null,"url":null,"abstract":"<p >We introduce a method for computing quantum mechanical forces through surface integrals over the stress tensor within the framework of the density functional theory. This approach avoids the inaccuracies of traditional force calculations using the Hellmann–Feynman theorem when applied to multiresolution wavelet representations of orbitals. By integrating the quantum mechanical stress tensor over surfaces that enclose individual nuclei, we achieve highly accurate forces that exhibit superior consistency with the potential energy surface. Extensive benchmarks show that surface integrals over the stress tensor offer a robust and reliable alternative to the direct use of the Hellmann–Feynman theorem for force computations in DFT with discontinuous basis sets, particularly in cases where wavelet-based methods are employed. In addition, we integrate this approach with machine learning techniques, demonstrating that the forces obtained through surface integrals are sufficiently accurate to be used as training data for machine-learned potentials. This stands in contrast to forces calculated using the Hellmann–Feynman theorem, which do not offer this level of accuracy.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 5","pages":"1469–1477 1469–1477"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c06708","citationCount":"0","resultStr":"{\"title\":\"Noise-Tolerant Force Calculations in Density Functional Theory: A Surface Integral Approach for Wavelet-Based Methods\",\"authors\":\"Moritz Gubler*,&nbsp;Jonas A. Finkler,&nbsp;Stig Rune Jensen,&nbsp;Stefan Goedecker and Luca Frediani*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.4c0670810.1021/acs.jpca.4c06708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We introduce a method for computing quantum mechanical forces through surface integrals over the stress tensor within the framework of the density functional theory. This approach avoids the inaccuracies of traditional force calculations using the Hellmann–Feynman theorem when applied to multiresolution wavelet representations of orbitals. By integrating the quantum mechanical stress tensor over surfaces that enclose individual nuclei, we achieve highly accurate forces that exhibit superior consistency with the potential energy surface. Extensive benchmarks show that surface integrals over the stress tensor offer a robust and reliable alternative to the direct use of the Hellmann–Feynman theorem for force computations in DFT with discontinuous basis sets, particularly in cases where wavelet-based methods are employed. In addition, we integrate this approach with machine learning techniques, demonstrating that the forces obtained through surface integrals are sufficiently accurate to be used as training data for machine-learned potentials. This stands in contrast to forces calculated using the Hellmann–Feynman theorem, which do not offer this level of accuracy.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 5\",\"pages\":\"1469–1477 1469–1477\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c06708\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c06708\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c06708","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在密度泛函理论的框架下,我们介绍了一种通过应力张量的表面积分计算量子力学力的方法。这种方法避免了传统的用海尔曼-费曼定理计算力的不准确性,当应用于轨道的多分辨率小波表示时。通过对包围单个原子核的表面上的量子力学应力张量进行积分,我们获得了与势能表面表现出优越一致性的高精度力。广泛的基准测试表明,应力张量上的表面积分为直接使用Hellmann-Feynman定理进行具有不连续基集的DFT中的力计算提供了一种鲁棒和可靠的替代方法,特别是在采用基于小波的方法的情况下。此外,我们将这种方法与机器学习技术相结合,证明通过表面积分获得的力足够精确,可以用作机器学习势的训练数据。这与使用赫尔曼-费曼定理计算力形成对比,后者不能提供这种程度的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise-Tolerant Force Calculations in Density Functional Theory: A Surface Integral Approach for Wavelet-Based Methods

We introduce a method for computing quantum mechanical forces through surface integrals over the stress tensor within the framework of the density functional theory. This approach avoids the inaccuracies of traditional force calculations using the Hellmann–Feynman theorem when applied to multiresolution wavelet representations of orbitals. By integrating the quantum mechanical stress tensor over surfaces that enclose individual nuclei, we achieve highly accurate forces that exhibit superior consistency with the potential energy surface. Extensive benchmarks show that surface integrals over the stress tensor offer a robust and reliable alternative to the direct use of the Hellmann–Feynman theorem for force computations in DFT with discontinuous basis sets, particularly in cases where wavelet-based methods are employed. In addition, we integrate this approach with machine learning techniques, demonstrating that the forces obtained through surface integrals are sufficiently accurate to be used as training data for machine-learned potentials. This stands in contrast to forces calculated using the Hellmann–Feynman theorem, which do not offer this level of accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信