Manuela Garay-Sarmiento, Abdulkadir Yayci, Yannik Rutsch, Hakim El Kadaoui, Sebastian Apelt, Jenny Englert, Alexander Boes, Martin Kohse, Felix Jakob, Thomas Bergs, Ulrich Schwaneberg* and Cesar Rodriguez-Emmenegger*,
{"title":"结构保护功能:多层工程表面修饰使钛牙种植体表面抵抗细菌定植","authors":"Manuela Garay-Sarmiento, Abdulkadir Yayci, Yannik Rutsch, Hakim El Kadaoui, Sebastian Apelt, Jenny Englert, Alexander Boes, Martin Kohse, Felix Jakob, Thomas Bergs, Ulrich Schwaneberg* and Cesar Rodriguez-Emmenegger*, ","doi":"10.1021/acsami.4c2111110.1021/acsami.4c21111","DOIUrl":null,"url":null,"abstract":"<p >The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases. Importantly, this growth raises concerns about postoperative infections, which present significant challenges within our healthcare system and lead to a two-thirds failure rate for infected implants. In this study, we present an innovative multilevel coating system that makes the surface of dental titanium implants resistant to bacterial colonization, thereby minimizing the risk of infection development. This multilevel coating features a nanometer-thick biohybrid coating layer combined with a microgroove surface microstructuring, creating physical barriers that enhance the stability of the biohybrids against mechanical abrasion. Our coating demonstrates excellent biocompatibility and strong antifouling properties against undiluted blood plasma proteins. Furthermore, the combination of surface microstructuring and the biohybrid coating remains stable under prolonged mechanical stress simulation and effectively repels clinically relevant bacteria, achieving a 99% reduction in bacterial colonization on the implant. These findings underscore the potential of this approach to prevent implant-associated infections and highlight the critical role of surface engineering in ensuring long-term implant performance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 5","pages":"7498–7509 7498–7509"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Protects Function: A Multilevel Engineered Surface Modification Renders the Surface of Titanium Dental Implants Resistant to Bacterial Colonization\",\"authors\":\"Manuela Garay-Sarmiento, Abdulkadir Yayci, Yannik Rutsch, Hakim El Kadaoui, Sebastian Apelt, Jenny Englert, Alexander Boes, Martin Kohse, Felix Jakob, Thomas Bergs, Ulrich Schwaneberg* and Cesar Rodriguez-Emmenegger*, \",\"doi\":\"10.1021/acsami.4c2111110.1021/acsami.4c21111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases. Importantly, this growth raises concerns about postoperative infections, which present significant challenges within our healthcare system and lead to a two-thirds failure rate for infected implants. In this study, we present an innovative multilevel coating system that makes the surface of dental titanium implants resistant to bacterial colonization, thereby minimizing the risk of infection development. This multilevel coating features a nanometer-thick biohybrid coating layer combined with a microgroove surface microstructuring, creating physical barriers that enhance the stability of the biohybrids against mechanical abrasion. Our coating demonstrates excellent biocompatibility and strong antifouling properties against undiluted blood plasma proteins. Furthermore, the combination of surface microstructuring and the biohybrid coating remains stable under prolonged mechanical stress simulation and effectively repels clinically relevant bacteria, achieving a 99% reduction in bacterial colonization on the implant. These findings underscore the potential of this approach to prevent implant-associated infections and highlight the critical role of surface engineering in ensuring long-term implant performance.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 5\",\"pages\":\"7498–7509 7498–7509\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c21111\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c21111","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure Protects Function: A Multilevel Engineered Surface Modification Renders the Surface of Titanium Dental Implants Resistant to Bacterial Colonization
The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases. Importantly, this growth raises concerns about postoperative infections, which present significant challenges within our healthcare system and lead to a two-thirds failure rate for infected implants. In this study, we present an innovative multilevel coating system that makes the surface of dental titanium implants resistant to bacterial colonization, thereby minimizing the risk of infection development. This multilevel coating features a nanometer-thick biohybrid coating layer combined with a microgroove surface microstructuring, creating physical barriers that enhance the stability of the biohybrids against mechanical abrasion. Our coating demonstrates excellent biocompatibility and strong antifouling properties against undiluted blood plasma proteins. Furthermore, the combination of surface microstructuring and the biohybrid coating remains stable under prolonged mechanical stress simulation and effectively repels clinically relevant bacteria, achieving a 99% reduction in bacterial colonization on the implant. These findings underscore the potential of this approach to prevent implant-associated infections and highlight the critical role of surface engineering in ensuring long-term implant performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.