结构保护功能:多层工程表面修饰使钛牙种植体表面抵抗细菌定植

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manuela Garay-Sarmiento, Abdulkadir Yayci, Yannik Rutsch, Hakim El Kadaoui, Sebastian Apelt, Jenny Englert, Alexander Boes, Martin Kohse, Felix Jakob, Thomas Bergs, Ulrich Schwaneberg* and Cesar Rodriguez-Emmenegger*, 
{"title":"结构保护功能:多层工程表面修饰使钛牙种植体表面抵抗细菌定植","authors":"Manuela Garay-Sarmiento,&nbsp;Abdulkadir Yayci,&nbsp;Yannik Rutsch,&nbsp;Hakim El Kadaoui,&nbsp;Sebastian Apelt,&nbsp;Jenny Englert,&nbsp;Alexander Boes,&nbsp;Martin Kohse,&nbsp;Felix Jakob,&nbsp;Thomas Bergs,&nbsp;Ulrich Schwaneberg* and Cesar Rodriguez-Emmenegger*,&nbsp;","doi":"10.1021/acsami.4c2111110.1021/acsami.4c21111","DOIUrl":null,"url":null,"abstract":"<p >The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases. Importantly, this growth raises concerns about postoperative infections, which present significant challenges within our healthcare system and lead to a two-thirds failure rate for infected implants. In this study, we present an innovative multilevel coating system that makes the surface of dental titanium implants resistant to bacterial colonization, thereby minimizing the risk of infection development. This multilevel coating features a nanometer-thick biohybrid coating layer combined with a microgroove surface microstructuring, creating physical barriers that enhance the stability of the biohybrids against mechanical abrasion. Our coating demonstrates excellent biocompatibility and strong antifouling properties against undiluted blood plasma proteins. Furthermore, the combination of surface microstructuring and the biohybrid coating remains stable under prolonged mechanical stress simulation and effectively repels clinically relevant bacteria, achieving a 99% reduction in bacterial colonization on the implant. These findings underscore the potential of this approach to prevent implant-associated infections and highlight the critical role of surface engineering in ensuring long-term implant performance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 5","pages":"7498–7509 7498–7509"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Protects Function: A Multilevel Engineered Surface Modification Renders the Surface of Titanium Dental Implants Resistant to Bacterial Colonization\",\"authors\":\"Manuela Garay-Sarmiento,&nbsp;Abdulkadir Yayci,&nbsp;Yannik Rutsch,&nbsp;Hakim El Kadaoui,&nbsp;Sebastian Apelt,&nbsp;Jenny Englert,&nbsp;Alexander Boes,&nbsp;Martin Kohse,&nbsp;Felix Jakob,&nbsp;Thomas Bergs,&nbsp;Ulrich Schwaneberg* and Cesar Rodriguez-Emmenegger*,&nbsp;\",\"doi\":\"10.1021/acsami.4c2111110.1021/acsami.4c21111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases. Importantly, this growth raises concerns about postoperative infections, which present significant challenges within our healthcare system and lead to a two-thirds failure rate for infected implants. In this study, we present an innovative multilevel coating system that makes the surface of dental titanium implants resistant to bacterial colonization, thereby minimizing the risk of infection development. This multilevel coating features a nanometer-thick biohybrid coating layer combined with a microgroove surface microstructuring, creating physical barriers that enhance the stability of the biohybrids against mechanical abrasion. Our coating demonstrates excellent biocompatibility and strong antifouling properties against undiluted blood plasma proteins. Furthermore, the combination of surface microstructuring and the biohybrid coating remains stable under prolonged mechanical stress simulation and effectively repels clinically relevant bacteria, achieving a 99% reduction in bacterial colonization on the implant. These findings underscore the potential of this approach to prevent implant-associated infections and highlight the critical role of surface engineering in ensuring long-term implant performance.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 5\",\"pages\":\"7498–7509 7498–7509\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c21111\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c21111","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

到2032年,全球种植牙市场预计将达到95亿美元,由于牙科疾病的患病率上升,复合年增长率为6.5%。重要的是,这种增长引起了对术后感染的关注,这给我们的医疗保健系统带来了重大挑战,导致感染植入物的失败率达到三分之二。在这项研究中,我们提出了一种创新的多层涂层系统,使牙科钛种植体表面抵抗细菌定植,从而最大限度地降低感染发展的风险。这种多层涂层的特点是纳米厚的生物杂化涂层结合了微槽表面微结构,形成了物理屏障,增强了生物杂化材料抗机械磨损的稳定性。我们的涂层对未稀释的血浆蛋白具有良好的生物相容性和强大的防污性能。此外,表面微结构和生物杂化涂层的结合在长时间的机械应力模拟下保持稳定,并有效地排斥临床相关的细菌,使种植体上的细菌定植减少99%。这些发现强调了这种方法在预防种植体相关感染方面的潜力,并强调了表面工程在确保种植体长期性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure Protects Function: A Multilevel Engineered Surface Modification Renders the Surface of Titanium Dental Implants Resistant to Bacterial Colonization

Structure Protects Function: A Multilevel Engineered Surface Modification Renders the Surface of Titanium Dental Implants Resistant to Bacterial Colonization

The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases. Importantly, this growth raises concerns about postoperative infections, which present significant challenges within our healthcare system and lead to a two-thirds failure rate for infected implants. In this study, we present an innovative multilevel coating system that makes the surface of dental titanium implants resistant to bacterial colonization, thereby minimizing the risk of infection development. This multilevel coating features a nanometer-thick biohybrid coating layer combined with a microgroove surface microstructuring, creating physical barriers that enhance the stability of the biohybrids against mechanical abrasion. Our coating demonstrates excellent biocompatibility and strong antifouling properties against undiluted blood plasma proteins. Furthermore, the combination of surface microstructuring and the biohybrid coating remains stable under prolonged mechanical stress simulation and effectively repels clinically relevant bacteria, achieving a 99% reduction in bacterial colonization on the implant. These findings underscore the potential of this approach to prevent implant-associated infections and highlight the critical role of surface engineering in ensuring long-term implant performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信