电化学储能的混合材料

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Christopher Choi*, Yunkai Luo, Aaron Reed, Grace Whang and Bruce Dunn*, 
{"title":"电化学储能的混合材料","authors":"Christopher Choi*,&nbsp;Yunkai Luo,&nbsp;Aaron Reed,&nbsp;Grace Whang and Bruce Dunn*,&nbsp;","doi":"10.1021/acs.chemmater.4c0220310.1021/acs.chemmater.4c02203","DOIUrl":null,"url":null,"abstract":"<p >Hybrid materials hold significant promise for a variety of applications due to their customizable properties and functionalities that can be readily tailored by selecting specific elements and altering material compositions. In this review, we highlight the emerging potential of hybrid materials in energy storage applications, particularly as electrode and electrolyte materials. We describe model hybrid energy storage materials composed of organic and inorganic constituents. An overview of representative hybrid materials including metal–organic frameworks (MOFs), intercalated layered materials, and ionogels is provided with an emphasis on their material and functional properties enabled by hybridization.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 24","pages":"11738–11755 11738–11755"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Materials for Electrochemical Energy Storage\",\"authors\":\"Christopher Choi*,&nbsp;Yunkai Luo,&nbsp;Aaron Reed,&nbsp;Grace Whang and Bruce Dunn*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c0220310.1021/acs.chemmater.4c02203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hybrid materials hold significant promise for a variety of applications due to their customizable properties and functionalities that can be readily tailored by selecting specific elements and altering material compositions. In this review, we highlight the emerging potential of hybrid materials in energy storage applications, particularly as electrode and electrolyte materials. We describe model hybrid energy storage materials composed of organic and inorganic constituents. An overview of representative hybrid materials including metal–organic frameworks (MOFs), intercalated layered materials, and ionogels is provided with an emphasis on their material and functional properties enabled by hybridization.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"36 24\",\"pages\":\"11738–11755 11738–11755\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02203\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02203","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于混合材料具有可定制的特性和功能,可以通过选择特定元素和改变材料成分来轻松定制,因此在各种应用中具有重要的前景。在这篇综述中,我们强调了混合材料在储能应用中的新兴潜力,特别是作为电极和电解质材料。我们描述了由有机和无机成分组成的模型混合储能材料。概述了典型的杂化材料,包括金属有机框架(MOFs),插层材料和电离层凝胶,重点介绍了它们的材料和功能特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid Materials for Electrochemical Energy Storage

Hybrid Materials for Electrochemical Energy Storage

Hybrid materials hold significant promise for a variety of applications due to their customizable properties and functionalities that can be readily tailored by selecting specific elements and altering material compositions. In this review, we highlight the emerging potential of hybrid materials in energy storage applications, particularly as electrode and electrolyte materials. We describe model hybrid energy storage materials composed of organic and inorganic constituents. An overview of representative hybrid materials including metal–organic frameworks (MOFs), intercalated layered materials, and ionogels is provided with an emphasis on their material and functional properties enabled by hybridization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信