ZrO(OH)2/Zn-MOF作为可见光催化5-羟甲基糠醛合成乙酰丙酸的纳米催化剂

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sahil Sharma, Sahil Thakur, Jyoti Rohilla, Raghubir Singh* and Varinder Kaur*, 
{"title":"ZrO(OH)2/Zn-MOF作为可见光催化5-羟甲基糠醛合成乙酰丙酸的纳米催化剂","authors":"Sahil Sharma,&nbsp;Sahil Thakur,&nbsp;Jyoti Rohilla,&nbsp;Raghubir Singh* and Varinder Kaur*,&nbsp;","doi":"10.1021/acsanm.4c0560310.1021/acsanm.4c05603","DOIUrl":null,"url":null,"abstract":"<p >The organic transformation requires efficient and durable catalysts to drive reactions with high selectivity and efficiency. Herein, we demonstrate the postfunctionalization of a Zn-metal–organic framework (Zn-MOF), derived from trimesic acid building units, with zirconyl hydroxide to produce a nanocatalyst ZrO(OH)<sub>2</sub>/Zn-MOF. The parent nanomaterial Zn-MOF is constituted by Zn(II) octahedra aligned parallelly to form a highly porous two-dimensional (2D) paddle-wheel network with dual pores of size 6.41 and 9.60 nm. The porosity of the nanomaterial allows Zr(IV) moieties (size ranging from 2.5 to 3 nm) to percolate and occupy the vacant spaces. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) analysis, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), inductively coupled plasma mass spectrometry (ICP-MS), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) confirm the formation of ZrO(OH)<sub>2</sub>/Zn-MOF with sufficient porosity, thermal stability, and crystallinity. The hydrated form of zirconia (ZrO(OH)<sub>2</sub>) provides the active sites for the photocatalytic conversion of levulinic acid to 5-hydroxymethylfurfural via acid-catalyzed hydrolysis. The ZrO(OH)<sub>2</sub>/Zn-MOF catalyzes the conversion when irradiated with visible light at room temperature yielding &gt;99% of levulinic acid in 2 h. The selective formation of levulinic acid has been verified by NMR spectroscopy and high-performance liquid chromatography (HPLC-PDA). The reaction kinetics and mechanism are also confirmed by density functional theory (DFT) studies. The catalyst exhibits excellent efficiency, stability, and reusability without any oligomerization over multiple cycles.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 24","pages":"28466–28477 28466–28477"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZrO(OH)2/Zn-MOF as a Nanocatalyst for Visible-Light-Driven Synthesis of Levulinic Acid from 5-Hydroxymethylfurfural\",\"authors\":\"Sahil Sharma,&nbsp;Sahil Thakur,&nbsp;Jyoti Rohilla,&nbsp;Raghubir Singh* and Varinder Kaur*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0560310.1021/acsanm.4c05603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The organic transformation requires efficient and durable catalysts to drive reactions with high selectivity and efficiency. Herein, we demonstrate the postfunctionalization of a Zn-metal–organic framework (Zn-MOF), derived from trimesic acid building units, with zirconyl hydroxide to produce a nanocatalyst ZrO(OH)<sub>2</sub>/Zn-MOF. The parent nanomaterial Zn-MOF is constituted by Zn(II) octahedra aligned parallelly to form a highly porous two-dimensional (2D) paddle-wheel network with dual pores of size 6.41 and 9.60 nm. The porosity of the nanomaterial allows Zr(IV) moieties (size ranging from 2.5 to 3 nm) to percolate and occupy the vacant spaces. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) analysis, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), inductively coupled plasma mass spectrometry (ICP-MS), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) confirm the formation of ZrO(OH)<sub>2</sub>/Zn-MOF with sufficient porosity, thermal stability, and crystallinity. The hydrated form of zirconia (ZrO(OH)<sub>2</sub>) provides the active sites for the photocatalytic conversion of levulinic acid to 5-hydroxymethylfurfural via acid-catalyzed hydrolysis. The ZrO(OH)<sub>2</sub>/Zn-MOF catalyzes the conversion when irradiated with visible light at room temperature yielding &gt;99% of levulinic acid in 2 h. The selective formation of levulinic acid has been verified by NMR spectroscopy and high-performance liquid chromatography (HPLC-PDA). The reaction kinetics and mechanism are also confirmed by density functional theory (DFT) studies. The catalyst exhibits excellent efficiency, stability, and reusability without any oligomerization over multiple cycles.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"7 24\",\"pages\":\"28466–28477 28466–28477\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c05603\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05603","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机转化需要高效耐用的催化剂来驱动高选择性和高效率的反应。在此,我们展示了由三羧酸构建单元衍生的锌金属有机骨架(Zn-MOF)与氢氧化锆的后功能化,以生产纳米催化剂ZrO(OH)2/Zn-MOF。母纳米材料Zn- mof由平行排列的Zn(II)八面体组成,形成具有6.41和9.60 nm双孔的高孔二维桨轮网络。纳米材料的孔隙率允许Zr(IV)部分(尺寸范围从2.5到3nm)渗透并占据空白空间。傅里叶变换红外(FTIR)、热重分析(TGA)、Brunauer-Emmett-Teller (BET)、场发射扫描电镜(FESEM)、高分辨率透射电子显微镜(HRTEM)、粉末x射线衍射(PXRD)、电感耦合等离子体质谱(ICP-MS)、程序升温解吸(TPD)和x射线光电子能谱(XPS)证实了ZrO(OH)2/Zn-MOF具有足够的孔隙度、热稳定性和结晶度。氧化锆的水合形式(ZrO(OH)2)通过酸催化水解为乙酰丙酸光催化转化为5-羟甲基糠醛提供了活性位点。在室温可见光照射下,ZrO(OH)2/Zn-MOF催化乙酰丙酸在2 h内生成99%的乙酰丙酸。通过核磁共振波谱和高效液相色谱(HPLC-PDA)验证了乙酰丙酸的选择性生成。密度泛函理论(DFT)也证实了反应动力学和机理。该催化剂表现出优异的效率、稳定性和可重复使用性,在多次循环中不会发生低聚现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ZrO(OH)2/Zn-MOF as a Nanocatalyst for Visible-Light-Driven Synthesis of Levulinic Acid from 5-Hydroxymethylfurfural

ZrO(OH)2/Zn-MOF as a Nanocatalyst for Visible-Light-Driven Synthesis of Levulinic Acid from 5-Hydroxymethylfurfural

The organic transformation requires efficient and durable catalysts to drive reactions with high selectivity and efficiency. Herein, we demonstrate the postfunctionalization of a Zn-metal–organic framework (Zn-MOF), derived from trimesic acid building units, with zirconyl hydroxide to produce a nanocatalyst ZrO(OH)2/Zn-MOF. The parent nanomaterial Zn-MOF is constituted by Zn(II) octahedra aligned parallelly to form a highly porous two-dimensional (2D) paddle-wheel network with dual pores of size 6.41 and 9.60 nm. The porosity of the nanomaterial allows Zr(IV) moieties (size ranging from 2.5 to 3 nm) to percolate and occupy the vacant spaces. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) analysis, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), inductively coupled plasma mass spectrometry (ICP-MS), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) confirm the formation of ZrO(OH)2/Zn-MOF with sufficient porosity, thermal stability, and crystallinity. The hydrated form of zirconia (ZrO(OH)2) provides the active sites for the photocatalytic conversion of levulinic acid to 5-hydroxymethylfurfural via acid-catalyzed hydrolysis. The ZrO(OH)2/Zn-MOF catalyzes the conversion when irradiated with visible light at room temperature yielding >99% of levulinic acid in 2 h. The selective formation of levulinic acid has been verified by NMR spectroscopy and high-performance liquid chromatography (HPLC-PDA). The reaction kinetics and mechanism are also confirmed by density functional theory (DFT) studies. The catalyst exhibits excellent efficiency, stability, and reusability without any oligomerization over multiple cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信