Ag纳米粒子和{P2W18}型多金属氧酸盐纳米团簇修饰TiO2纳米纤维光降解有机污染物

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nan Lin, Liping Cui*, Yajie Ma*, Qin Wang and Kai Yu*, 
{"title":"Ag纳米粒子和{P2W18}型多金属氧酸盐纳米团簇修饰TiO2纳米纤维光降解有机污染物","authors":"Nan Lin,&nbsp;Liping Cui*,&nbsp;Yajie Ma*,&nbsp;Qin Wang and Kai Yu*,&nbsp;","doi":"10.1021/acsanm.4c0541510.1021/acsanm.4c05415","DOIUrl":null,"url":null,"abstract":"<p >The development of effective and stable photocatalysts for water treatment remains a significant challenge in environmental remediation. In this work, {P<sub>2</sub>W<sub>18</sub>}-type polyoxometalate (POM) cluster and Ag nanoparticles (NPs) are monodispersed on internal and external surfaces of TiO<sub>2</sub> nanofibers by electrospinning and solvothermal methods. P<sub>2</sub>W<sub>18</sub>@TiO<sub>2</sub>–Ag-6.12 exhibits the most efficient separation of photogenerated electron–hole pairs and the highest photocatalytic activity. The P<sub>2</sub>W<sub>18</sub>/TiO<sub>2</sub>–Ag of this ratio shows efficient and continuous activity for the photodegradation of 2,4-dichlorophenol (2,4-DCP) and the degradation of salicylic acid in the presence of a peroxydisulfate system under ultraviolet (UV) irradiation with a maximum degradation efficiency of 96.63% for 2,4-DCP and 84.67% for salicylic acid within 60 and 30 min, respectively. The reaction pathways and mechanism of photocatalytic processes were studied in detail. Results indicate that TiO<sub>2</sub> nanofibers prevent Ag NP agglomeration, increase POM surface area, and improve composite stability. The synergistic effect of the three materials enhances electron–hole separation and transport, reduces band gap width and redox potential, and boosts photocatalytic efficiency. This work offers a strategy for developing efficient, stable nanoheterojunction catalysts for environmental remediation.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 24","pages":"28329–28337 28329–28337"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO2 Nanofibers Decorated with Ag Nanoparticles and {P2W18}-Type Polyoxometalate Nanoclusters for Photodegradation of Organic Pollutants\",\"authors\":\"Nan Lin,&nbsp;Liping Cui*,&nbsp;Yajie Ma*,&nbsp;Qin Wang and Kai Yu*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0541510.1021/acsanm.4c05415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of effective and stable photocatalysts for water treatment remains a significant challenge in environmental remediation. In this work, {P<sub>2</sub>W<sub>18</sub>}-type polyoxometalate (POM) cluster and Ag nanoparticles (NPs) are monodispersed on internal and external surfaces of TiO<sub>2</sub> nanofibers by electrospinning and solvothermal methods. P<sub>2</sub>W<sub>18</sub>@TiO<sub>2</sub>–Ag-6.12 exhibits the most efficient separation of photogenerated electron–hole pairs and the highest photocatalytic activity. The P<sub>2</sub>W<sub>18</sub>/TiO<sub>2</sub>–Ag of this ratio shows efficient and continuous activity for the photodegradation of 2,4-dichlorophenol (2,4-DCP) and the degradation of salicylic acid in the presence of a peroxydisulfate system under ultraviolet (UV) irradiation with a maximum degradation efficiency of 96.63% for 2,4-DCP and 84.67% for salicylic acid within 60 and 30 min, respectively. The reaction pathways and mechanism of photocatalytic processes were studied in detail. Results indicate that TiO<sub>2</sub> nanofibers prevent Ag NP agglomeration, increase POM surface area, and improve composite stability. The synergistic effect of the three materials enhances electron–hole separation and transport, reduces band gap width and redox potential, and boosts photocatalytic efficiency. This work offers a strategy for developing efficient, stable nanoheterojunction catalysts for environmental remediation.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"7 24\",\"pages\":\"28329–28337 28329–28337\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c05415\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05415","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、稳定的水处理光催化剂仍然是环境修复中的一个重大挑战。本研究采用静电纺丝和溶剂热法将{P2W18}型多金属氧酸盐(POM)簇和银纳米粒子(NPs)单分散在TiO2纳米纤维的内外表面。P2W18@TiO2 -Ag-6.12光电子空穴对分离效率最高,光催化活性最高。该比例的P2W18/ TiO2-Ag对2,4-二氯苯酚(2,4- dcp)和水杨酸在过氧二硫酸盐体系存在下的紫外(UV)照射下的持续降解具有高效活性,在60 min和30 min内对2,4- dcp和水杨酸的最大降解效率分别为96.63%和84.67%。详细研究了光催化过程的反应途径和机理。结果表明,TiO2纳米纤维可防止Ag NP团聚,增加POM的表面积,提高复合材料的稳定性。三种材料的协同作用增强了电子空穴的分离和输运,减小了带隙宽度和氧化还原电位,提高了光催化效率。这项工作为开发高效、稳定的纳米异质结环境修复催化剂提供了策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TiO2 Nanofibers Decorated with Ag Nanoparticles and {P2W18}-Type Polyoxometalate Nanoclusters for Photodegradation of Organic Pollutants

TiO2 Nanofibers Decorated with Ag Nanoparticles and {P2W18}-Type Polyoxometalate Nanoclusters for Photodegradation of Organic Pollutants

The development of effective and stable photocatalysts for water treatment remains a significant challenge in environmental remediation. In this work, {P2W18}-type polyoxometalate (POM) cluster and Ag nanoparticles (NPs) are monodispersed on internal and external surfaces of TiO2 nanofibers by electrospinning and solvothermal methods. P2W18@TiO2–Ag-6.12 exhibits the most efficient separation of photogenerated electron–hole pairs and the highest photocatalytic activity. The P2W18/TiO2–Ag of this ratio shows efficient and continuous activity for the photodegradation of 2,4-dichlorophenol (2,4-DCP) and the degradation of salicylic acid in the presence of a peroxydisulfate system under ultraviolet (UV) irradiation with a maximum degradation efficiency of 96.63% for 2,4-DCP and 84.67% for salicylic acid within 60 and 30 min, respectively. The reaction pathways and mechanism of photocatalytic processes were studied in detail. Results indicate that TiO2 nanofibers prevent Ag NP agglomeration, increase POM surface area, and improve composite stability. The synergistic effect of the three materials enhances electron–hole separation and transport, reduces band gap width and redox potential, and boosts photocatalytic efficiency. This work offers a strategy for developing efficient, stable nanoheterojunction catalysts for environmental remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信