氢键有机骨架作为超声可编程传递平台

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-02-05 DOI:10.1038/s41586-024-08401-0
Wenliang Wang, Yanshu Shi, Wenrui Chai, Kai Wing Kevin Tang, Ilya Pyatnitskiy, Yi Xie, Xiangping Liu, Weilong He, Jinmo Jeong, Ju-Chun Hsieh, Anakaren Romero Lozano, Brinkley Artman, Xi Shi, Nicole Hoefer, Binita Shrestha, Noah B. Stern, Wei Zhou, David W. McComb, Tyrone Porter, Graeme Henkelman, Banglin Chen, Huiliang Wang
{"title":"氢键有机骨架作为超声可编程传递平台","authors":"Wenliang Wang, Yanshu Shi, Wenrui Chai, Kai Wing Kevin Tang, Ilya Pyatnitskiy, Yi Xie, Xiangping Liu, Weilong He, Jinmo Jeong, Ju-Chun Hsieh, Anakaren Romero Lozano, Brinkley Artman, Xi Shi, Nicole Hoefer, Binita Shrestha, Noah B. Stern, Wei Zhou, David W. McComb, Tyrone Porter, Graeme Henkelman, Banglin Chen, Huiliang Wang","doi":"10.1038/s41586-024-08401-0","DOIUrl":null,"url":null,"abstract":"The precise control of mechanochemical activation within deep tissues using non-invasive ultrasound holds profound implications for advancing our understanding of fundamental biomedical sciences and revolutionizing disease treatments1–4. However, a theory-guided mechanoresponsive materials system with well-defined ultrasound activation has yet to be explored5,6. Here we present the concept of using porous hydrogen-bonded organic frameworks (HOFs) as toolkits for focused ultrasound (FUS) programmably triggered drug activation to control specific cellular events in the deep brain, through on-demand scission of the supramolecular interactions. A theoretical model is developed to potentially visualize the mechanochemical scission and ultrasound mechanics, providing valuable guidelines for the rational design of mechanoresponsive materials to achieve programmable control. To demonstrate the practicality of this approach, we encapsulate the designer drug clozapine N-oxide (CNO) into the optimal HOF nanocrystals for FUS-gated release to activate engineered G-protein-coupled receptors in the ventral tegmental area (VTA) of mice and rats and hence achieve targeted neural circuit modulation even at depth 9 mm with a latency of seconds. This work demonstrates the capability of ultrasound to precisely control molecular interactions and develops ultrasound-programmable HOFs to non-invasively and spatiotemporally control cellular events, thereby facilitating the establishment of precise molecular therapeutic possibilities. The concept of using hydrogen-bonded organic frameworks triggered by non-invasive focused ultrasound for programmable drug activation is explored and demonstrated practically with the designer drug clozapine N-oxide for deep brain stimulation in mice and rats.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8050","pages":"401-410"},"PeriodicalIF":48.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H-bonded organic frameworks as ultrasound-programmable delivery platform\",\"authors\":\"Wenliang Wang, Yanshu Shi, Wenrui Chai, Kai Wing Kevin Tang, Ilya Pyatnitskiy, Yi Xie, Xiangping Liu, Weilong He, Jinmo Jeong, Ju-Chun Hsieh, Anakaren Romero Lozano, Brinkley Artman, Xi Shi, Nicole Hoefer, Binita Shrestha, Noah B. Stern, Wei Zhou, David W. McComb, Tyrone Porter, Graeme Henkelman, Banglin Chen, Huiliang Wang\",\"doi\":\"10.1038/s41586-024-08401-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise control of mechanochemical activation within deep tissues using non-invasive ultrasound holds profound implications for advancing our understanding of fundamental biomedical sciences and revolutionizing disease treatments1–4. However, a theory-guided mechanoresponsive materials system with well-defined ultrasound activation has yet to be explored5,6. Here we present the concept of using porous hydrogen-bonded organic frameworks (HOFs) as toolkits for focused ultrasound (FUS) programmably triggered drug activation to control specific cellular events in the deep brain, through on-demand scission of the supramolecular interactions. A theoretical model is developed to potentially visualize the mechanochemical scission and ultrasound mechanics, providing valuable guidelines for the rational design of mechanoresponsive materials to achieve programmable control. To demonstrate the practicality of this approach, we encapsulate the designer drug clozapine N-oxide (CNO) into the optimal HOF nanocrystals for FUS-gated release to activate engineered G-protein-coupled receptors in the ventral tegmental area (VTA) of mice and rats and hence achieve targeted neural circuit modulation even at depth 9 mm with a latency of seconds. This work demonstrates the capability of ultrasound to precisely control molecular interactions and develops ultrasound-programmable HOFs to non-invasively and spatiotemporally control cellular events, thereby facilitating the establishment of precise molecular therapeutic possibilities. The concept of using hydrogen-bonded organic frameworks triggered by non-invasive focused ultrasound for programmable drug activation is explored and demonstrated practically with the designer drug clozapine N-oxide for deep brain stimulation in mice and rats.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"638 8050\",\"pages\":\"401-410\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-024-08401-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08401-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用非侵入性超声精确控制深层组织内的机械化学激活对促进我们对基础生物医学科学的理解和彻底改变疾病治疗具有深远的意义1,2,3,4。然而,一个理论指导的机械反应材料系统,具有明确定义的超声激活还有待探索5,6。在这里,我们提出了使用多孔氢键有机框架(HOFs)作为聚焦超声(FUS)可编程触发药物激活的工具包的概念,通过按需切断超分子相互作用来控制脑深部的特定细胞事件。建立了机械化学断裂和超声力学的可视化理论模型,为机械响应材料的合理设计提供了有价值的指导,从而实现可编程控制。为了证明这种方法的实用性,我们将设计药物氯氮平n-氧化物(CNO)封装到最佳的HOF纳米晶体中,用于fus门控释放,以激活小鼠和大鼠腹侧被盖区(VTA)的工程g蛋白偶联受体,从而实现靶向神经回路调节,即使在深度为9毫米的地方,潜伏期为秒。这项工作证明了超声波精确控制分子相互作用的能力,并开发了超声波可编程的hof,以非侵入性和时空性地控制细胞事件,从而促进了精确分子治疗可能性的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

H-bonded organic frameworks as ultrasound-programmable delivery platform

H-bonded organic frameworks as ultrasound-programmable delivery platform

H-bonded organic frameworks as ultrasound-programmable delivery platform
The precise control of mechanochemical activation within deep tissues using non-invasive ultrasound holds profound implications for advancing our understanding of fundamental biomedical sciences and revolutionizing disease treatments1–4. However, a theory-guided mechanoresponsive materials system with well-defined ultrasound activation has yet to be explored5,6. Here we present the concept of using porous hydrogen-bonded organic frameworks (HOFs) as toolkits for focused ultrasound (FUS) programmably triggered drug activation to control specific cellular events in the deep brain, through on-demand scission of the supramolecular interactions. A theoretical model is developed to potentially visualize the mechanochemical scission and ultrasound mechanics, providing valuable guidelines for the rational design of mechanoresponsive materials to achieve programmable control. To demonstrate the practicality of this approach, we encapsulate the designer drug clozapine N-oxide (CNO) into the optimal HOF nanocrystals for FUS-gated release to activate engineered G-protein-coupled receptors in the ventral tegmental area (VTA) of mice and rats and hence achieve targeted neural circuit modulation even at depth 9 mm with a latency of seconds. This work demonstrates the capability of ultrasound to precisely control molecular interactions and develops ultrasound-programmable HOFs to non-invasively and spatiotemporally control cellular events, thereby facilitating the establishment of precise molecular therapeutic possibilities. The concept of using hydrogen-bonded organic frameworks triggered by non-invasive focused ultrasound for programmable drug activation is explored and demonstrated practically with the designer drug clozapine N-oxide for deep brain stimulation in mice and rats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信