近几十年来导致欧洲过度变暖的驱动因素和机制

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Buwen Dong, Rowan T. Sutton
{"title":"近几十年来导致欧洲过度变暖的驱动因素和机制","authors":"Buwen Dong, Rowan T. Sutton","doi":"10.1038/s41612-025-00930-3","DOIUrl":null,"url":null,"abstract":"<p>Over the period 1979-2022, European surface air temperatures warmed around three times as fast as the global mean temperatures in both winter and summer. Here we define “excess” European warming as the difference between the rate of European regional warming and the rate of global warming and investigate the causes. Using a simple observation-based method, we estimate that around 40% ± 39% (in winter) and 29% ± 10% (in summer) of excess European warming is “dynamical” - attributable to changes in atmospheric circulation. We show that the rate of European warming simulated in CMIP6 models compares well with the observations, but only because these models warm too fast in the global mean; excess European warming is underestimated, particularly in winter. The CMIP6 models simulate well the magnitude of the thermodynamic component of excess European warming since 1979 in both winter and summer, they suggest only a weak dynamical contribution in the multi-model mean. The models suggest greenhouse gas-induced warming made the largest contribution to excess thermodynamic warming in winter, whereas changes in anthropogenic aerosols made the largest contribution in summer. They also imply a substantially reduced future rate of excess European warming in summer. However, the failure of current models to simulate observed circulation trends (either as a forced response or as a combination of forced response and internal variability) also implies large uncertainty in future rates of European warming.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"61 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivers and mechanisms contributing to excess warming in Europe during recent decades\",\"authors\":\"Buwen Dong, Rowan T. Sutton\",\"doi\":\"10.1038/s41612-025-00930-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the period 1979-2022, European surface air temperatures warmed around three times as fast as the global mean temperatures in both winter and summer. Here we define “excess” European warming as the difference between the rate of European regional warming and the rate of global warming and investigate the causes. Using a simple observation-based method, we estimate that around 40% ± 39% (in winter) and 29% ± 10% (in summer) of excess European warming is “dynamical” - attributable to changes in atmospheric circulation. We show that the rate of European warming simulated in CMIP6 models compares well with the observations, but only because these models warm too fast in the global mean; excess European warming is underestimated, particularly in winter. The CMIP6 models simulate well the magnitude of the thermodynamic component of excess European warming since 1979 in both winter and summer, they suggest only a weak dynamical contribution in the multi-model mean. The models suggest greenhouse gas-induced warming made the largest contribution to excess thermodynamic warming in winter, whereas changes in anthropogenic aerosols made the largest contribution in summer. They also imply a substantially reduced future rate of excess European warming in summer. However, the failure of current models to simulate observed circulation trends (either as a forced response or as a combination of forced response and internal variability) also implies large uncertainty in future rates of European warming.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00930-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00930-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在1979年至2022年期间,欧洲地表气温的升温速度是冬季和夏季全球平均气温的三倍左右。本文将欧洲“过度”变暖定义为欧洲区域变暖速率与全球变暖速率之差,并探讨其原因。使用简单的基于观测的方法,我们估计大约40%±39%(冬季)和29%±10%(夏季)的欧洲过度变暖是“动力”的——可归因于大气环流的变化。研究表明,CMIP6模式模拟的欧洲变暖速率与观测值比较好,但这只是因为这些模式的全球平均变暖速度太快;欧洲过度变暖被低估了,尤其是在冬季。CMIP6模式很好地模拟了1979年以来欧洲冬季和夏季过度变暖的热力分量的大小,它们表明在多模式平均值中只有微弱的动力贡献。模式显示,温室气体引起的变暖在冬季对超额热力学变暖贡献最大,而人为气溶胶的变化在夏季贡献最大。它们还意味着未来欧洲夏季过度变暖的速度将大大降低。然而,当前模式无法模拟观测到的环流趋势(要么作为强迫响应,要么作为强迫响应和内部变率的组合)也意味着未来欧洲变暖速率存在很大的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drivers and mechanisms contributing to excess warming in Europe during recent decades

Drivers and mechanisms contributing to excess warming in Europe during recent decades

Over the period 1979-2022, European surface air temperatures warmed around three times as fast as the global mean temperatures in both winter and summer. Here we define “excess” European warming as the difference between the rate of European regional warming and the rate of global warming and investigate the causes. Using a simple observation-based method, we estimate that around 40% ± 39% (in winter) and 29% ± 10% (in summer) of excess European warming is “dynamical” - attributable to changes in atmospheric circulation. We show that the rate of European warming simulated in CMIP6 models compares well with the observations, but only because these models warm too fast in the global mean; excess European warming is underestimated, particularly in winter. The CMIP6 models simulate well the magnitude of the thermodynamic component of excess European warming since 1979 in both winter and summer, they suggest only a weak dynamical contribution in the multi-model mean. The models suggest greenhouse gas-induced warming made the largest contribution to excess thermodynamic warming in winter, whereas changes in anthropogenic aerosols made the largest contribution in summer. They also imply a substantially reduced future rate of excess European warming in summer. However, the failure of current models to simulate observed circulation trends (either as a forced response or as a combination of forced response and internal variability) also implies large uncertainty in future rates of European warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信