空间模式分析细胞集成(空间)发现复杂的空间组织在细胞和组织水平

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Edward C. Schrom, Erin F. McCaffrey, Vivek Sreejithkumar, Andrea J. Radtke, Hiroshi Ichise, Armando Arroyo-Mejias, Emily Speranza, Leanne Arakkal, Nishant Thakur, Spencer Grant, Ronald N. Germain
{"title":"空间模式分析细胞集成(空间)发现复杂的空间组织在细胞和组织水平","authors":"Edward C. Schrom, Erin F. McCaffrey, Vivek Sreejithkumar, Andrea J. Radtke, Hiroshi Ichise, Armando Arroyo-Mejias, Emily Speranza, Leanne Arakkal, Nishant Thakur, Spencer Grant, Ronald N. Germain","doi":"10.1073/pnas.2412146122","DOIUrl":null,"url":null,"abstract":"Spatial patterns of cells and other biological elements drive physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data. SPACE is compatible with any data collection modality that records values (i.e., categorical cell/structure types or quantitative expression levels) at fixed spatial coordinates (i.e., 2d pixels or 3d voxels). SPACE detects not only broad patterns of co-occurrence but also context-dependent associations, quantitative gradients and orientations, and other organizational complexities. Via a robust information theoretic framework, SPACE explores all possible ensembles of tissue elements—single elements, pairs, triplets, and so on—and ranks the most strongly patterned ensembles. For single images, rankings reflect differences from random assortment. For sets of images, rankings reflect differences across sample groups (e.g., genotypes, treatments, timepoints, etc.). Further tools then characterize the nature of each pattern for intuitive interpretation. We validate SPACE and demonstrate its advantages using murine lymph node images for which ground truth has been defined. We then detect new patterns across varied datasets, including tumors and tuberculosis granulomas.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"11 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Patterning Analysis of Cellular Ensembles (SPACE) finds complex spatial organization at the cell and tissue levels\",\"authors\":\"Edward C. Schrom, Erin F. McCaffrey, Vivek Sreejithkumar, Andrea J. Radtke, Hiroshi Ichise, Armando Arroyo-Mejias, Emily Speranza, Leanne Arakkal, Nishant Thakur, Spencer Grant, Ronald N. Germain\",\"doi\":\"10.1073/pnas.2412146122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial patterns of cells and other biological elements drive physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data. SPACE is compatible with any data collection modality that records values (i.e., categorical cell/structure types or quantitative expression levels) at fixed spatial coordinates (i.e., 2d pixels or 3d voxels). SPACE detects not only broad patterns of co-occurrence but also context-dependent associations, quantitative gradients and orientations, and other organizational complexities. Via a robust information theoretic framework, SPACE explores all possible ensembles of tissue elements—single elements, pairs, triplets, and so on—and ranks the most strongly patterned ensembles. For single images, rankings reflect differences from random assortment. For sets of images, rankings reflect differences across sample groups (e.g., genotypes, treatments, timepoints, etc.). Further tools then characterize the nature of each pattern for intuitive interpretation. We validate SPACE and demonstrate its advantages using murine lymph node images for which ground truth has been defined. We then detect new patterns across varied datasets, including tumors and tuberculosis granulomas.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2412146122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412146122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

细胞和其他生物元素的空间模式驱动组织内的生理和病理过程。虽然许多成像和转录组学方法记录了组织组织,但识别这些模式是具有挑战性的,特别是当它们涉及复杂排列的多个元素时。为了应对这一挑战,我们提出了一个用于分析高复杂性空间数据的R包——Cellular Ensembles空间模式分析(SPACE)。SPACE与在固定空间坐标(即2d像素或3d体素)上记录值(即分类细胞/结构类型或定量表达水平)的任何数据收集方式兼容。SPACE不仅检测共同发生的广泛模式,还检测与上下文相关的关联、数量梯度和方向,以及其他组织复杂性。通过一个强大的信息理论框架,SPACE探索了所有可能的组织元素组合——单个元素、对、三联体等等——并对最强烈的组合进行了排序。对于单个图像,排名反映了随机分类的差异。对于图像集,排名反映了样本组之间的差异(例如,基因型,治疗,时间点等)。然后,进一步的工具将描述每个模式的性质,以便进行直观的解释。我们验证空间,并证明其优势,使用小鼠淋巴结图像的地面真理已被定义。然后,我们在不同的数据集中发现新的模式,包括肿瘤和结核肉芽肿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Patterning Analysis of Cellular Ensembles (SPACE) finds complex spatial organization at the cell and tissue levels
Spatial patterns of cells and other biological elements drive physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data. SPACE is compatible with any data collection modality that records values (i.e., categorical cell/structure types or quantitative expression levels) at fixed spatial coordinates (i.e., 2d pixels or 3d voxels). SPACE detects not only broad patterns of co-occurrence but also context-dependent associations, quantitative gradients and orientations, and other organizational complexities. Via a robust information theoretic framework, SPACE explores all possible ensembles of tissue elements—single elements, pairs, triplets, and so on—and ranks the most strongly patterned ensembles. For single images, rankings reflect differences from random assortment. For sets of images, rankings reflect differences across sample groups (e.g., genotypes, treatments, timepoints, etc.). Further tools then characterize the nature of each pattern for intuitive interpretation. We validate SPACE and demonstrate its advantages using murine lymph node images for which ground truth has been defined. We then detect new patterns across varied datasets, including tumors and tuberculosis granulomas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信