反应扩散偏微分方程延迟补偿反演的深度学习

IF 7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Shanshan Wang;Mamadou Diagne;Miroslav Krstić
{"title":"反应扩散偏微分方程延迟补偿反演的深度学习","authors":"Shanshan Wang;Mamadou Diagne;Miroslav Krstić","doi":"10.1109/TAC.2025.3538755","DOIUrl":null,"url":null,"abstract":"With deep neural network approximations of partial differential equation (PDE) backstepping, for each new functional coefficient of the PDE plant, the gains are obtained through a function evaluation. In this article, we expand this framework to control of cascaded PDE systems from distinct classes: a reaction–diffusion plant, which is a parabolic PDE, with input delay, which is a hyperbolic PDE. The DeepONet-approximated nonlinear operator for the control gain is a cascade/composition of the operators defined by one hyperbolic PDE of the Goursat form and one parabolic PDE on a rectangle, both of which are bilinear in their input functions and not explicitly solvable. For the DeepONet-approximated delay-compensated PDE backstepping controller, we guarantee exponential stability in the <inline-formula><tex-math>$L^{2}$</tex-math></inline-formula> norm of the plant state and the <inline-formula><tex-math>$H^{1}$</tex-math></inline-formula> norm of the input delay state.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"70 6","pages":"4209-4216"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning of Delay-Compensated Backstepping for Reaction–Diffusion PDEs\",\"authors\":\"Shanshan Wang;Mamadou Diagne;Miroslav Krstić\",\"doi\":\"10.1109/TAC.2025.3538755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With deep neural network approximations of partial differential equation (PDE) backstepping, for each new functional coefficient of the PDE plant, the gains are obtained through a function evaluation. In this article, we expand this framework to control of cascaded PDE systems from distinct classes: a reaction–diffusion plant, which is a parabolic PDE, with input delay, which is a hyperbolic PDE. The DeepONet-approximated nonlinear operator for the control gain is a cascade/composition of the operators defined by one hyperbolic PDE of the Goursat form and one parabolic PDE on a rectangle, both of which are bilinear in their input functions and not explicitly solvable. For the DeepONet-approximated delay-compensated PDE backstepping controller, we guarantee exponential stability in the <inline-formula><tex-math>$L^{2}$</tex-math></inline-formula> norm of the plant state and the <inline-formula><tex-math>$H^{1}$</tex-math></inline-formula> norm of the input delay state.\",\"PeriodicalId\":13201,\"journal\":{\"name\":\"IEEE Transactions on Automatic Control\",\"volume\":\"70 6\",\"pages\":\"4209-4216\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Automatic Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10872816/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10872816/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用深度神经网络逼近偏微分方程(PDE)反演,对PDE对象的每一个新的泛函系数,通过函数求值获得增益。在本文中,我们将这一框架扩展到从不同类别的级联PDE系统的控制:反应扩散装置,这是一个抛物型PDE,具有输入延迟,这是一个双曲型PDE。用于控制增益的deeponet近似非线性算子是由一个Goursat形式的双曲PDE和一个矩形上的抛物线PDE定义的算子的级联/组合,这两个算子的输入函数都是双线性的,并且不能显式求解。对于deeponet近似延迟补偿PDE反步控制器,我们保证了在对象状态的$L^{2}$范数和输入延迟状态的$H^{1}$范数下的指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning of Delay-Compensated Backstepping for Reaction–Diffusion PDEs
With deep neural network approximations of partial differential equation (PDE) backstepping, for each new functional coefficient of the PDE plant, the gains are obtained through a function evaluation. In this article, we expand this framework to control of cascaded PDE systems from distinct classes: a reaction–diffusion plant, which is a parabolic PDE, with input delay, which is a hyperbolic PDE. The DeepONet-approximated nonlinear operator for the control gain is a cascade/composition of the operators defined by one hyperbolic PDE of the Goursat form and one parabolic PDE on a rectangle, both of which are bilinear in their input functions and not explicitly solvable. For the DeepONet-approximated delay-compensated PDE backstepping controller, we guarantee exponential stability in the $L^{2}$ norm of the plant state and the $H^{1}$ norm of the input delay state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Automatic Control
IEEE Transactions on Automatic Control 工程技术-工程:电子与电气
CiteScore
11.30
自引率
5.90%
发文量
824
审稿时长
9 months
期刊介绍: In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered: 1) Papers: Presentation of significant research, development, or application of control concepts. 2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions. In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信