公平联邦模型的分布式交叉学习——对加州五家医院数据的隐私保护预测

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tsung-Ting Kuo, Rodney A. Gabriel, Jejo Koola, Robert T. Schooley, Lucila Ohno-Machado
{"title":"公平联邦模型的分布式交叉学习——对加州五家医院数据的隐私保护预测","authors":"Tsung-Ting Kuo, Rodney A. Gabriel, Jejo Koola, Robert T. Schooley, Lucila Ohno-Machado","doi":"10.1038/s41467-025-56510-9","DOIUrl":null,"url":null,"abstract":"<p>Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients’ privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed cross-learning for equitable federated models - privacy-preserving prediction on data from five California hospitals\",\"authors\":\"Tsung-Ting Kuo, Rodney A. Gabriel, Jejo Koola, Robert T. Schooley, Lucila Ohno-Machado\",\"doi\":\"10.1038/s41467-025-56510-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients’ privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56510-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56510-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

医疗预测分析可以支持质量改进、临床研究和患者护理。可以通过集成来自不同医疗保健中心的更多患者记录(横向)或集成来自不同中心的患者部分信息(纵向)来改进预测模型。我们为公平联邦模型引入了分布式交叉学习(D-CLEF),它结合了水平或垂直分区的数据,而不传播患者级别的记录,以保护患者的隐私。我们将D-CLEF与集中式/竖井式/联合式学习在水平或垂直场景下进行了比较。使用来自加州大学(UC)五个健康医疗中心的15,000多名COVID-19患者的数据,来自加州大学圣地亚哥分校的手术数据以及来自英国爱丁堡的心脏病数据,D-CLEF的表现接近集中式解决方案,优于孤立的解决方案,相当于联邦学习对应的解决方案,但同步时间增加。在这里,我们展示了D-CLEF为医疗保健系统提供了一个很有前途的加速器,可以在不向自己的系统外提交患者数据的情况下进行协作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed cross-learning for equitable federated models - privacy-preserving prediction on data from five California hospitals

Distributed cross-learning for equitable federated models - privacy-preserving prediction on data from five California hospitals

Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients’ privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信