Tsung-Ting Kuo, Rodney A. Gabriel, Jejo Koola, Robert T. Schooley, Lucila Ohno-Machado
{"title":"公平联邦模型的分布式交叉学习——对加州五家医院数据的隐私保护预测","authors":"Tsung-Ting Kuo, Rodney A. Gabriel, Jejo Koola, Robert T. Schooley, Lucila Ohno-Machado","doi":"10.1038/s41467-025-56510-9","DOIUrl":null,"url":null,"abstract":"<p>Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients’ privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed cross-learning for equitable federated models - privacy-preserving prediction on data from five California hospitals\",\"authors\":\"Tsung-Ting Kuo, Rodney A. Gabriel, Jejo Koola, Robert T. Schooley, Lucila Ohno-Machado\",\"doi\":\"10.1038/s41467-025-56510-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients’ privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56510-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56510-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Distributed cross-learning for equitable federated models - privacy-preserving prediction on data from five California hospitals
Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients’ privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.