紫外线诱导的三维基因组重组介导DNA损伤反应

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Veysel Oğulcan Kaya, Ogün Adebali
{"title":"紫外线诱导的三维基因组重组介导DNA损伤反应","authors":"Veysel Oğulcan Kaya, Ogün Adebali","doi":"10.1038/s41467-024-55724-7","DOIUrl":null,"url":null,"abstract":"<p>While it is well-established that UV radiation threatens genomic integrity, the precise mechanisms by which cells orchestrate DNA damage response and repair within the context of 3D genome architecture remain unclear. Here, we address this gap by investigating the UV-induced reorganization of the 3D genome and its critical role in mediating damage response. Employing temporal maps of contact matrices and transcriptional profiles, we illustrate the immediate and holistic changes in genome architecture post-irradiation, emphasizing the significance of this reconfiguration for effective DNA repair processes. We demonstrate that UV radiation triggers a comprehensive restructuring of the 3D genome organization at all levels, including loops, topologically associating domains and compartments. Through the analysis of DNA damage and excision repair maps, we uncover a correlation between genome folding, gene regulation, damage formation probability, and repair efficacy. We show that adaptive reorganization of the 3D genome is a key mediator of the damage response, providing new insights into the complex interplay of genomic structure and cellular defense mechanisms against UV-induced damage, thereby advancing our understanding of cellular resilience.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"55 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-induced reorganization of 3D genome mediates DNA damage response\",\"authors\":\"Veysel Oğulcan Kaya, Ogün Adebali\",\"doi\":\"10.1038/s41467-024-55724-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While it is well-established that UV radiation threatens genomic integrity, the precise mechanisms by which cells orchestrate DNA damage response and repair within the context of 3D genome architecture remain unclear. Here, we address this gap by investigating the UV-induced reorganization of the 3D genome and its critical role in mediating damage response. Employing temporal maps of contact matrices and transcriptional profiles, we illustrate the immediate and holistic changes in genome architecture post-irradiation, emphasizing the significance of this reconfiguration for effective DNA repair processes. We demonstrate that UV radiation triggers a comprehensive restructuring of the 3D genome organization at all levels, including loops, topologically associating domains and compartments. Through the analysis of DNA damage and excision repair maps, we uncover a correlation between genome folding, gene regulation, damage formation probability, and repair efficacy. We show that adaptive reorganization of the 3D genome is a key mediator of the damage response, providing new insights into the complex interplay of genomic structure and cellular defense mechanisms against UV-induced damage, thereby advancing our understanding of cellular resilience.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55724-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55724-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然紫外线辐射威胁基因组完整性已经得到证实,但在3D基因组结构的背景下,细胞协调DNA损伤反应和修复的确切机制仍不清楚。在这里,我们通过研究紫外线诱导的3D基因组重组及其在介导损伤反应中的关键作用来解决这一空白。利用接触矩阵和转录谱的时间图,我们说明了辐照后基因组结构的直接和整体变化,强调了这种重构对有效DNA修复过程的重要性。我们证明,紫外线辐射触发了三维基因组组织在各个层面的全面重组,包括环,拓扑相关结构域和区室。通过对DNA损伤和切除修复图谱的分析,我们揭示了基因组折叠、基因调控、损伤形成概率和修复效果之间的相关性。我们发现三维基因组的适应性重组是损伤反应的关键中介,为基因组结构和细胞防御机制对抗紫外线诱导损伤的复杂相互作用提供了新的见解,从而促进了我们对细胞弹性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

UV-induced reorganization of 3D genome mediates DNA damage response

UV-induced reorganization of 3D genome mediates DNA damage response

While it is well-established that UV radiation threatens genomic integrity, the precise mechanisms by which cells orchestrate DNA damage response and repair within the context of 3D genome architecture remain unclear. Here, we address this gap by investigating the UV-induced reorganization of the 3D genome and its critical role in mediating damage response. Employing temporal maps of contact matrices and transcriptional profiles, we illustrate the immediate and holistic changes in genome architecture post-irradiation, emphasizing the significance of this reconfiguration for effective DNA repair processes. We demonstrate that UV radiation triggers a comprehensive restructuring of the 3D genome organization at all levels, including loops, topologically associating domains and compartments. Through the analysis of DNA damage and excision repair maps, we uncover a correlation between genome folding, gene regulation, damage formation probability, and repair efficacy. We show that adaptive reorganization of the 3D genome is a key mediator of the damage response, providing new insights into the complex interplay of genomic structure and cellular defense mechanisms against UV-induced damage, thereby advancing our understanding of cellular resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信