Ming-Shen Tu, Zi-Heng Wang, Qiong-Hai Chen, Zai-Ping Guo, Fei-Fei Cao and Huan Ye
{"title":"具有增强迁移率的锂离子纳米机器人用于快离子导电聚合物电解质","authors":"Ming-Shen Tu, Zi-Heng Wang, Qiong-Hai Chen, Zai-Ping Guo, Fei-Fei Cao and Huan Ye","doi":"10.1039/D4EE05881J","DOIUrl":null,"url":null,"abstract":"<p >Ion transport in known polymer electrolytes highly depends on the segmental motion of polymer chains and they have low ionic conductivity due to a single-ion transport pathway. Novel design paradigms are required to enhance the performance of polymer electrolytes beyond traditional systems. Here the role of an ultrasmall nanoparticle-assisted-migration is shown to significantly enhance the ionic conductivity of polyethylene oxide (PEO) polymer electrolytes. PEGylated nanoparticles with a size of much smaller than the gyration radius of the PEO chain diffuse rapidly within the PEO matrix and function as ion nanorobots for the transport of Li-ions. The ultrasmall nanoparticles also act as lubricants that further enhance the chain mobility of the bulk PEO backbone. The ultrasmall nanoparticle migration synergistically with accelerated segmental motion of the PEO form a dual-channel Li<small><sup>+</sup></small> transport pathway, leading to an increase of the Li<small><sup>+</sup></small> conductivity of the PEO-based electrolyte by three orders of magnitude. The electrolyte enables stable symmetric cell-cycling performance of >1800 h and long-term charge/discharge stability for 980 cycles when used for a Li|LiFePO<small><sub>4</sub></small> full battery at 50 °C. This work highlights the potential of activating hopping of nanoparticles in composite polymer electrolytes to construct high-performance polymer-based all-solid-state battery.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 6","pages":" 2873-2882"},"PeriodicalIF":30.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li-ion nanorobots with enhanced mobility for fast-ion conducting polymer electrolytes†\",\"authors\":\"Ming-Shen Tu, Zi-Heng Wang, Qiong-Hai Chen, Zai-Ping Guo, Fei-Fei Cao and Huan Ye\",\"doi\":\"10.1039/D4EE05881J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ion transport in known polymer electrolytes highly depends on the segmental motion of polymer chains and they have low ionic conductivity due to a single-ion transport pathway. Novel design paradigms are required to enhance the performance of polymer electrolytes beyond traditional systems. Here the role of an ultrasmall nanoparticle-assisted-migration is shown to significantly enhance the ionic conductivity of polyethylene oxide (PEO) polymer electrolytes. PEGylated nanoparticles with a size of much smaller than the gyration radius of the PEO chain diffuse rapidly within the PEO matrix and function as ion nanorobots for the transport of Li-ions. The ultrasmall nanoparticles also act as lubricants that further enhance the chain mobility of the bulk PEO backbone. The ultrasmall nanoparticle migration synergistically with accelerated segmental motion of the PEO form a dual-channel Li<small><sup>+</sup></small> transport pathway, leading to an increase of the Li<small><sup>+</sup></small> conductivity of the PEO-based electrolyte by three orders of magnitude. The electrolyte enables stable symmetric cell-cycling performance of >1800 h and long-term charge/discharge stability for 980 cycles when used for a Li|LiFePO<small><sub>4</sub></small> full battery at 50 °C. This work highlights the potential of activating hopping of nanoparticles in composite polymer electrolytes to construct high-performance polymer-based all-solid-state battery.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 6\",\"pages\":\" 2873-2882\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee05881j\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee05881j","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Li-ion nanorobots with enhanced mobility for fast-ion conducting polymer electrolytes†
Ion transport in known polymer electrolytes highly depends on the segmental motion of polymer chains and they have low ionic conductivity due to a single-ion transport pathway. Novel design paradigms are required to enhance the performance of polymer electrolytes beyond traditional systems. Here the role of an ultrasmall nanoparticle-assisted-migration is shown to significantly enhance the ionic conductivity of polyethylene oxide (PEO) polymer electrolytes. PEGylated nanoparticles with a size of much smaller than the gyration radius of the PEO chain diffuse rapidly within the PEO matrix and function as ion nanorobots for the transport of Li-ions. The ultrasmall nanoparticles also act as lubricants that further enhance the chain mobility of the bulk PEO backbone. The ultrasmall nanoparticle migration synergistically with accelerated segmental motion of the PEO form a dual-channel Li+ transport pathway, leading to an increase of the Li+ conductivity of the PEO-based electrolyte by three orders of magnitude. The electrolyte enables stable symmetric cell-cycling performance of >1800 h and long-term charge/discharge stability for 980 cycles when used for a Li|LiFePO4 full battery at 50 °C. This work highlights the potential of activating hopping of nanoparticles in composite polymer electrolytes to construct high-performance polymer-based all-solid-state battery.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).