Development of recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid and simple detection of Tylenchulus semipenetrans in soil
BACKGROUND
Tylenchulus semipenetrans, the causal agent of citrus slow decline disease, is one of the most destructive plant-parasitic nematodes in all citrus-growing regions of the world, causing significant reductions in citrus growth and yield. Accurate and rapid detection of T. semipenetrans is critical for the diagnosis and effective control of the disease.
RESULTS
We developed a rapid, visual, isothermal detection method using recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay to detect T. semipenetrans in soil. The primers and a probe were designed based on sequence differences in the internal transcribed spacer region 1 (ITS1) of ribosomal DNA (rDNA) among T. semipenetrans and four other Tylenchulus species. The RPA reaction can be performed in 10–25 min at a constant temperature ranging from 30 to 45 °C, and the result can be read directly on the LFD within 3 min. Under the optimized conditions, the RPA-LFD assay could specifically detect T. semipenetrans with a sensitivity as low as 10−2 second-stage juveniles/0.5 g soil, which was 10-fold more sensitive than that of the conventional PCR assay. Furthermore, we combined a soil DNA extraction method with the RPA-LFD assay to achieve simple and rapid detection of T. semipenetrans in natural field soil samples within 1 h.
期刊介绍:
Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management.
Published for SCI by John Wiley & Sons Ltd.