复合敷料辅助激光连接断裂肌腱的工艺与性能试验研究。

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Jun Huang, Yanyu Li, Mintao Yan, Jinjin Wu, Kehong Wang
{"title":"复合敷料辅助激光连接断裂肌腱的工艺与性能试验研究。","authors":"Jun Huang,&nbsp;Yanyu Li,&nbsp;Mintao Yan,&nbsp;Jinjin Wu,&nbsp;Kehong Wang","doi":"10.1002/jbio.202400528","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tendon tissue plays an important role in transmitting the force, increasing the incidence of serious tendon injuries. The clinical method of tendon tissue repair is contact surgical suture, which has the problem of high requirements for surgery. Laser has a noncontact feature that can reduce postoperative complications. However, the tissue has low tensile strength due to the weak ability to absorb the energy. Dressing-assisted laser joining of ruptured tendons can improve the tensile strength of ruptured tendon tissue. The enhancement effect of the dressing was tested, and the mechanical properties and thermal damage of the tendon tissue were analyzed. The results show that with 0.005% SWCNTS +0.3% ICG, the tensile strength can be achieved at 1.30 MPa, the collagen content can be achieved at 27.68% and the degree of thermal denaturation is only 0.31. The results have important value for further research on tendon tissue repair techniques.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Research on the Process and Performance of Composite Dressing-Assisted Laser Joining of Ruptured Tendons\",\"authors\":\"Jun Huang,&nbsp;Yanyu Li,&nbsp;Mintao Yan,&nbsp;Jinjin Wu,&nbsp;Kehong Wang\",\"doi\":\"10.1002/jbio.202400528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Tendon tissue plays an important role in transmitting the force, increasing the incidence of serious tendon injuries. The clinical method of tendon tissue repair is contact surgical suture, which has the problem of high requirements for surgery. Laser has a noncontact feature that can reduce postoperative complications. However, the tissue has low tensile strength due to the weak ability to absorb the energy. Dressing-assisted laser joining of ruptured tendons can improve the tensile strength of ruptured tendon tissue. The enhancement effect of the dressing was tested, and the mechanical properties and thermal damage of the tendon tissue were analyzed. The results show that with 0.005% SWCNTS +0.3% ICG, the tensile strength can be achieved at 1.30 MPa, the collagen content can be achieved at 27.68% and the degree of thermal denaturation is only 0.31. The results have important value for further research on tendon tissue repair techniques.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400528\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400528","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

肌腱组织在力的传递中起着重要的作用,增加了严重肌腱损伤的发生率。肌腱组织修复的临床方法是接触手术缝合,存在手术要求高的问题。激光具有非接触的特点,可以减少术后并发症。然而,由于吸收能量的能力较弱,组织的抗拉强度较低。敷料辅助激光连接断裂肌腱可以提高断裂肌腱组织的抗拉强度。测试了敷料的增强效果,分析了肌腱组织的力学性能和热损伤情况。结果表明,当SWCNTS用量为0.005% + ICG用量为0.3%时,拉伸强度可达1.30 MPa,胶原含量可达27.68%,热变性度仅为0.31。该结果对进一步研究肌腱组织修复技术具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Research on the Process and Performance of Composite Dressing-Assisted Laser Joining of Ruptured Tendons

Experimental Research on the Process and Performance of Composite Dressing-Assisted Laser Joining of Ruptured Tendons

Tendon tissue plays an important role in transmitting the force, increasing the incidence of serious tendon injuries. The clinical method of tendon tissue repair is contact surgical suture, which has the problem of high requirements for surgery. Laser has a noncontact feature that can reduce postoperative complications. However, the tissue has low tensile strength due to the weak ability to absorb the energy. Dressing-assisted laser joining of ruptured tendons can improve the tensile strength of ruptured tendon tissue. The enhancement effect of the dressing was tested, and the mechanical properties and thermal damage of the tendon tissue were analyzed. The results show that with 0.005% SWCNTS +0.3% ICG, the tensile strength can be achieved at 1.30 MPa, the collagen content can be achieved at 27.68% and the degree of thermal denaturation is only 0.31. The results have important value for further research on tendon tissue repair techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信