食源性三肽铜自愈水凝胶用于感染伤口愈合。

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0139
Han Chen, Pu Yang, Ping Xue, Songjie Li, Xin Dan, Yang Li, Lanjie Lei, Xing Fan
{"title":"食源性三肽铜自愈水凝胶用于感染伤口愈合。","authors":"Han Chen, Pu Yang, Ping Xue, Songjie Li, Xin Dan, Yang Li, Lanjie Lei, Xing Fan","doi":"10.34133/bmr.0139","DOIUrl":null,"url":null,"abstract":"<p><p>The field of infected wound management continues to face challenges, and traditional methods used to cope with wounds include debridement, gauze coverage, medication, and others. Currently, synthetic and natural biomaterials are readily available today, enabling the creation of new wound dressings that substantially enhance wound healing. Considerable attention is being paid to hydrogels based on natural materials, which have good biocompatibility and degradability properties, while exhibiting higher similarity to natural extracellular matrix as compared to synthetic materials. In this study, we extracted the active ingredients of oxidized konjac glucomannan (OKGM) and fresh egg white (EW) from 2 foods, konjac, and egg, respectively, and formed a self-repairing hydrogel based on the cross-linking of a Schiff base. Subsequently, a natural active peptide, glycyl-l-histidyl-l-lysine-Cu (GHK-Cu), was loaded, and an all-natural composite hydrogel dressing, EW/OKGM@GHK-Cu (GEK), was developed. The GEK hydrogel, exhibiting both antibacterial and anti-inflammatory properties, plays a hemostatic role by adhering to tissues and promoting neovascularization and serves as an optimal dressing for skin regeneration. Taken together, GEK hydrogel dressings derived from natural food sources therefore constitute an efficient and cost-effective strategy for managing infected wound healing and have significant potential for clinical application and transformation.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0139"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Food-Derived Tripeptide-Copper Self-Healing Hydrogel for Infected Wound Healing.\",\"authors\":\"Han Chen, Pu Yang, Ping Xue, Songjie Li, Xin Dan, Yang Li, Lanjie Lei, Xing Fan\",\"doi\":\"10.34133/bmr.0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of infected wound management continues to face challenges, and traditional methods used to cope with wounds include debridement, gauze coverage, medication, and others. Currently, synthetic and natural biomaterials are readily available today, enabling the creation of new wound dressings that substantially enhance wound healing. Considerable attention is being paid to hydrogels based on natural materials, which have good biocompatibility and degradability properties, while exhibiting higher similarity to natural extracellular matrix as compared to synthetic materials. In this study, we extracted the active ingredients of oxidized konjac glucomannan (OKGM) and fresh egg white (EW) from 2 foods, konjac, and egg, respectively, and formed a self-repairing hydrogel based on the cross-linking of a Schiff base. Subsequently, a natural active peptide, glycyl-l-histidyl-l-lysine-Cu (GHK-Cu), was loaded, and an all-natural composite hydrogel dressing, EW/OKGM@GHK-Cu (GEK), was developed. The GEK hydrogel, exhibiting both antibacterial and anti-inflammatory properties, plays a hemostatic role by adhering to tissues and promoting neovascularization and serves as an optimal dressing for skin regeneration. Taken together, GEK hydrogel dressings derived from natural food sources therefore constitute an efficient and cost-effective strategy for managing infected wound healing and have significant potential for clinical application and transformation.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0139\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

感染性伤口管理领域继续面临挑战,用于处理伤口的传统方法包括清创、纱布覆盖、药物治疗等。目前,合成和天然生物材料很容易获得,能够创造新的伤口敷料,大大提高伤口愈合。基于天然材料的水凝胶越来越受到人们的关注,它具有良好的生物相容性和可降解性,与合成材料相比,与天然细胞外基质具有更高的相似性。本研究分别从魔芋和鸡蛋两种食物中提取活性成分氧化魔芋葡甘露聚糖(OKGM)和新鲜蛋白(EW),形成基于席夫碱交联的自修复水凝胶。随后,将天然活性肽glyyl -l-histidyl-l-赖氨酸- cu (GHK-Cu)装入,并开发出全天然复合水凝胶敷料EW/OKGM@GHK-Cu (GEK)。GEK水凝胶具有抗菌和抗炎两种特性,通过粘附组织和促进新生血管形成而起到止血作用,是皮肤再生的最佳敷料。因此,从天然食物来源中提取的GEK水凝胶敷料构成了一种有效和具有成本效益的策略,用于管理感染伤口愈合,并具有重大的临床应用和转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Food-Derived Tripeptide-Copper Self-Healing Hydrogel for Infected Wound Healing.

The field of infected wound management continues to face challenges, and traditional methods used to cope with wounds include debridement, gauze coverage, medication, and others. Currently, synthetic and natural biomaterials are readily available today, enabling the creation of new wound dressings that substantially enhance wound healing. Considerable attention is being paid to hydrogels based on natural materials, which have good biocompatibility and degradability properties, while exhibiting higher similarity to natural extracellular matrix as compared to synthetic materials. In this study, we extracted the active ingredients of oxidized konjac glucomannan (OKGM) and fresh egg white (EW) from 2 foods, konjac, and egg, respectively, and formed a self-repairing hydrogel based on the cross-linking of a Schiff base. Subsequently, a natural active peptide, glycyl-l-histidyl-l-lysine-Cu (GHK-Cu), was loaded, and an all-natural composite hydrogel dressing, EW/OKGM@GHK-Cu (GEK), was developed. The GEK hydrogel, exhibiting both antibacterial and anti-inflammatory properties, plays a hemostatic role by adhering to tissues and promoting neovascularization and serves as an optimal dressing for skin regeneration. Taken together, GEK hydrogel dressings derived from natural food sources therefore constitute an efficient and cost-effective strategy for managing infected wound healing and have significant potential for clinical application and transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信