Ke Wang, Jiayang Meng, Zhangquan Wang, Kehua Zhao, Banteng Liu
{"title":"配水系统可持续需水量预测的鲁棒自适应优化。","authors":"Ke Wang, Jiayang Meng, Zhangquan Wang, Kehua Zhao, Banteng Liu","doi":"10.1038/s41598-025-88628-7","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of the Internet of Things has positioned intelligent water demand forecasting as a critical component in the quest for sustainable water resource management. Despite the potential benefits, the inherent non-stationarity of water consumption data poses significant hurdles to the predictive accuracy of forecasting models. This study introduces a novel approach, the Robust Adaptive Optimization Decomposition (RAOD) strategy, which integrates a deep neural network to address these challenges. The RAOD strategy leverages the Complete Ensemble Empirical Mode Decomposition (CEEMD) to preprocess the water demand series, mitigating the effects of non-stationarity and non-linearity. To further enhance the model's robustness, an innovative optimization algorithm is incorporated within the CEEMD process to minimize the variance in multi-scale arrangement entropy among the decomposed components, thereby improving the model's generalization capabilities. The predictive power of the proposed model is harnessed through the construction of deep neural networks that utilize the decomposed data to forecast minutely water demand. To validate the effectiveness of the RAOD strategy, real-world datasets from four distinct geographical regions are employed for multi-step ahead predictions. The experimental outcomes demonstrate that the RAOD model outperforms existing models across all considered metrics, highlighting its suitability for accurate and reliable water demand forecasting in the context of sustainable energy management.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4039"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust adaptive optimization for sustainable water demand prediction in water distribution systems.\",\"authors\":\"Ke Wang, Jiayang Meng, Zhangquan Wang, Kehua Zhao, Banteng Liu\",\"doi\":\"10.1038/s41598-025-88628-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of the Internet of Things has positioned intelligent water demand forecasting as a critical component in the quest for sustainable water resource management. Despite the potential benefits, the inherent non-stationarity of water consumption data poses significant hurdles to the predictive accuracy of forecasting models. This study introduces a novel approach, the Robust Adaptive Optimization Decomposition (RAOD) strategy, which integrates a deep neural network to address these challenges. The RAOD strategy leverages the Complete Ensemble Empirical Mode Decomposition (CEEMD) to preprocess the water demand series, mitigating the effects of non-stationarity and non-linearity. To further enhance the model's robustness, an innovative optimization algorithm is incorporated within the CEEMD process to minimize the variance in multi-scale arrangement entropy among the decomposed components, thereby improving the model's generalization capabilities. The predictive power of the proposed model is harnessed through the construction of deep neural networks that utilize the decomposed data to forecast minutely water demand. To validate the effectiveness of the RAOD strategy, real-world datasets from four distinct geographical regions are employed for multi-step ahead predictions. The experimental outcomes demonstrate that the RAOD model outperforms existing models across all considered metrics, highlighting its suitability for accurate and reliable water demand forecasting in the context of sustainable energy management.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4039\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88628-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88628-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Robust adaptive optimization for sustainable water demand prediction in water distribution systems.
The advancement of the Internet of Things has positioned intelligent water demand forecasting as a critical component in the quest for sustainable water resource management. Despite the potential benefits, the inherent non-stationarity of water consumption data poses significant hurdles to the predictive accuracy of forecasting models. This study introduces a novel approach, the Robust Adaptive Optimization Decomposition (RAOD) strategy, which integrates a deep neural network to address these challenges. The RAOD strategy leverages the Complete Ensemble Empirical Mode Decomposition (CEEMD) to preprocess the water demand series, mitigating the effects of non-stationarity and non-linearity. To further enhance the model's robustness, an innovative optimization algorithm is incorporated within the CEEMD process to minimize the variance in multi-scale arrangement entropy among the decomposed components, thereby improving the model's generalization capabilities. The predictive power of the proposed model is harnessed through the construction of deep neural networks that utilize the decomposed data to forecast minutely water demand. To validate the effectiveness of the RAOD strategy, real-world datasets from four distinct geographical regions are employed for multi-step ahead predictions. The experimental outcomes demonstrate that the RAOD model outperforms existing models across all considered metrics, highlighting its suitability for accurate and reliable water demand forecasting in the context of sustainable energy management.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.