高温响应型udp -葡萄糖基转移酶基因OsUGT72F1增强水稻和拟南芥的耐热性。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Yuqing Ma, Shuman Zhao, Xinmei Ma, Guangrui Dong, Chonglin Liu, Yi Ding, Bingkai Hou
{"title":"高温响应型udp -葡萄糖基转移酶基因OsUGT72F1增强水稻和拟南芥的耐热性。","authors":"Yuqing Ma, Shuman Zhao, Xinmei Ma, Guangrui Dong, Chonglin Liu, Yi Ding, Bingkai Hou","doi":"10.1007/s00299-025-03438-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>OsUGT72F1 enhances heat tolerance in plants by improving ROS scavenging and modifying multiple metabolic pathways, under the regulation of transcription factors OsHSFA3 and OsHSFA4a. High temperature is one of the most critical environmental constraints affecting plant growth and development, ultimately leading to yield losses in crops such as rice (Oryza sativa L.). UDP (uridine diphosphate)-dependent glycosyltransferases (UGTs) are believed to play crucial roles in coping with environmental stresses. However, the functions for the vast majority of UGTs under high temperature stress remain largely unknown. In this study, we isolated and characterized a high temperature responsive UDP-glycosyltransferase gene OsUGT72F1 in rice. Our findings demonstrated that overexpression of OsUGT72F1 enhanced heat-stress tolerance, while the mutant plants displayed a sensitive phenotype under the same stress conditions. Ectopic expression of OsUGT72F1 in Arabidopsis thaliana also conferred improved heat tolerance to the plants. Further investigation revealed that OsUGT72F1 reduced the generation of reactive oxygen species (ROS) and boosted the activity of antioxidant enzymes, thereby alleviating oxidative damage under heat-stress conditions. Moreover, transcriptomic analysis indicated that the action of OsUGT72F1 leads to the upregulation of multiple metabolic pathways including phenylpropanoid biosynthesis, zeatin biosynthesis, and flavonoid biosynthesis. In addition, the upstream regulatory mechanism of the OsUGT72F1 gene has been identified. We found that the transcription factors OsHSFA3 and OsHSFA4a can bind to the OsUGT72F1 promoter and enhance its transcription level. Together, this study revealed that the glycosyltransferase gene OsUGT72F1 plays a vital role in the adaptive adjustment of high temperature stress in plants, revealing a new heat tolerance pathway and providing a promising gene candidate for the breeding of heat-resistant crop varieties.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"48"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis.\",\"authors\":\"Yuqing Ma, Shuman Zhao, Xinmei Ma, Guangrui Dong, Chonglin Liu, Yi Ding, Bingkai Hou\",\"doi\":\"10.1007/s00299-025-03438-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>OsUGT72F1 enhances heat tolerance in plants by improving ROS scavenging and modifying multiple metabolic pathways, under the regulation of transcription factors OsHSFA3 and OsHSFA4a. High temperature is one of the most critical environmental constraints affecting plant growth and development, ultimately leading to yield losses in crops such as rice (Oryza sativa L.). UDP (uridine diphosphate)-dependent glycosyltransferases (UGTs) are believed to play crucial roles in coping with environmental stresses. However, the functions for the vast majority of UGTs under high temperature stress remain largely unknown. In this study, we isolated and characterized a high temperature responsive UDP-glycosyltransferase gene OsUGT72F1 in rice. Our findings demonstrated that overexpression of OsUGT72F1 enhanced heat-stress tolerance, while the mutant plants displayed a sensitive phenotype under the same stress conditions. Ectopic expression of OsUGT72F1 in Arabidopsis thaliana also conferred improved heat tolerance to the plants. Further investigation revealed that OsUGT72F1 reduced the generation of reactive oxygen species (ROS) and boosted the activity of antioxidant enzymes, thereby alleviating oxidative damage under heat-stress conditions. Moreover, transcriptomic analysis indicated that the action of OsUGT72F1 leads to the upregulation of multiple metabolic pathways including phenylpropanoid biosynthesis, zeatin biosynthesis, and flavonoid biosynthesis. In addition, the upstream regulatory mechanism of the OsUGT72F1 gene has been identified. We found that the transcription factors OsHSFA3 and OsHSFA4a can bind to the OsUGT72F1 promoter and enhance its transcription level. Together, this study revealed that the glycosyltransferase gene OsUGT72F1 plays a vital role in the adaptive adjustment of high temperature stress in plants, revealing a new heat tolerance pathway and providing a promising gene candidate for the breeding of heat-resistant crop varieties.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 2\",\"pages\":\"48\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-025-03438-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03438-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:OsUGT72F1在转录因子OsHSFA3和OsHSFA4a的调控下,通过改善ROS清除和改变多种代谢途径增强植物的耐热性。高温是影响植物生长发育的最关键的环境制约因素之一,最终导致水稻等作物的产量损失。UDP(尿苷二磷酸)依赖的糖基转移酶(UGTs)被认为在应对环境胁迫中起着至关重要的作用。然而,绝大多数ugt在高温胁迫下的功能仍然是未知的。在这项研究中,我们从水稻中分离并鉴定了一个高温响应的udp -糖基转移酶基因OsUGT72F1。我们的研究结果表明,过表达OsUGT72F1增强了耐热性,而突变植株在相同的胁迫条件下表现出敏感的表型。OsUGT72F1在拟南芥中的异位表达也提高了植物的耐热性。进一步研究发现,OsUGT72F1减少了活性氧(ROS)的产生,提高了抗氧化酶的活性,从而减轻了热胁迫条件下的氧化损伤。此外,转录组学分析表明,OsUGT72F1的作用导致多种代谢途径上调,包括苯丙素生物合成、玉米素生物合成和类黄酮生物合成。此外,OsUGT72F1基因的上游调控机制也已被确定。我们发现转录因子OsHSFA3和OsHSFA4a可以结合OsUGT72F1启动子并提高其转录水平。综上所述,本研究揭示了糖基转移酶基因OsUGT72F1在植物对高温胁迫的适应性调节中起着至关重要的作用,揭示了一条新的耐热途径,为耐热作物品种的选育提供了一个有希望的候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis.

Key message: OsUGT72F1 enhances heat tolerance in plants by improving ROS scavenging and modifying multiple metabolic pathways, under the regulation of transcription factors OsHSFA3 and OsHSFA4a. High temperature is one of the most critical environmental constraints affecting plant growth and development, ultimately leading to yield losses in crops such as rice (Oryza sativa L.). UDP (uridine diphosphate)-dependent glycosyltransferases (UGTs) are believed to play crucial roles in coping with environmental stresses. However, the functions for the vast majority of UGTs under high temperature stress remain largely unknown. In this study, we isolated and characterized a high temperature responsive UDP-glycosyltransferase gene OsUGT72F1 in rice. Our findings demonstrated that overexpression of OsUGT72F1 enhanced heat-stress tolerance, while the mutant plants displayed a sensitive phenotype under the same stress conditions. Ectopic expression of OsUGT72F1 in Arabidopsis thaliana also conferred improved heat tolerance to the plants. Further investigation revealed that OsUGT72F1 reduced the generation of reactive oxygen species (ROS) and boosted the activity of antioxidant enzymes, thereby alleviating oxidative damage under heat-stress conditions. Moreover, transcriptomic analysis indicated that the action of OsUGT72F1 leads to the upregulation of multiple metabolic pathways including phenylpropanoid biosynthesis, zeatin biosynthesis, and flavonoid biosynthesis. In addition, the upstream regulatory mechanism of the OsUGT72F1 gene has been identified. We found that the transcription factors OsHSFA3 and OsHSFA4a can bind to the OsUGT72F1 promoter and enhance its transcription level. Together, this study revealed that the glycosyltransferase gene OsUGT72F1 plays a vital role in the adaptive adjustment of high temperature stress in plants, revealing a new heat tolerance pathway and providing a promising gene candidate for the breeding of heat-resistant crop varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信