靶向KDM4C通过激活SOS2预防急性心肌梗死后心力衰竭

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Caiping Tan, Xiaoqi Chen, Lingqi Xu, Jiaping Chen, Yingbing Tu
{"title":"靶向KDM4C通过激活SOS2预防急性心肌梗死后心力衰竭","authors":"Caiping Tan, Xiaoqi Chen, Lingqi Xu, Jiaping Chen, Yingbing Tu","doi":"10.1007/s12265-025-10594-2","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we focused on the function of SOS2 in heart failure (HF) after acute myocardial infarction (AMI) and investigated the mechanism. An oxygen-glucose deprivation (OGD) model in HL-1 cardiomyocytes and the ligation of the left anterior descending coronary artery in mice were conducted for MI modeling. SOS2 was downregulated in the heart tissues of mice with AMI. SOS2 activated the PI3K/Akt signaling, thereby alleviating cardiomyocyte apoptosis and inflammatory response, which were compromised by PI3K/Akt signaling inhibitor LY294002. Lysine-specific demethylase 4C (KDM4C) levels were downregulated in the heart tissue of AMI mice and OGD-induced HL-1 cells, accompanied by a reduction in H3K9Me3, while KDM4C overexpression triggered SOS2 expression by removing H3K9Me3 modification from its promoter. Knockdown of SOS2 abated the effects of KDM4C overexpression, thereby accentuating HF in mice. This study revealed that KDM4C protected mice against HF following AMI by restoration of SOS2 and the PI3K/Akt signaling.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting KDM4C Prevents Heart Failure after Acute Myocardial Infarction Via Activation of SOS2.\",\"authors\":\"Caiping Tan, Xiaoqi Chen, Lingqi Xu, Jiaping Chen, Yingbing Tu\",\"doi\":\"10.1007/s12265-025-10594-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, we focused on the function of SOS2 in heart failure (HF) after acute myocardial infarction (AMI) and investigated the mechanism. An oxygen-glucose deprivation (OGD) model in HL-1 cardiomyocytes and the ligation of the left anterior descending coronary artery in mice were conducted for MI modeling. SOS2 was downregulated in the heart tissues of mice with AMI. SOS2 activated the PI3K/Akt signaling, thereby alleviating cardiomyocyte apoptosis and inflammatory response, which were compromised by PI3K/Akt signaling inhibitor LY294002. Lysine-specific demethylase 4C (KDM4C) levels were downregulated in the heart tissue of AMI mice and OGD-induced HL-1 cells, accompanied by a reduction in H3K9Me3, while KDM4C overexpression triggered SOS2 expression by removing H3K9Me3 modification from its promoter. Knockdown of SOS2 abated the effects of KDM4C overexpression, thereby accentuating HF in mice. This study revealed that KDM4C protected mice against HF following AMI by restoration of SOS2 and the PI3K/Akt signaling.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-025-10594-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-025-10594-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究SOS2在急性心肌梗死(AMI)后心力衰竭(HF)中的作用,并探讨其机制。采用小鼠HL-1心肌细胞氧糖剥夺(OGD)模型和结扎左冠状动脉前降支法建立心肌梗死模型。急性心肌梗死小鼠心脏组织中SOS2表达下调。SOS2激活PI3K/Akt信号通路,从而缓解PI3K/Akt信号通路抑制剂LY294002抑制的心肌细胞凋亡和炎症反应。在AMI小鼠和ogd诱导的HL-1细胞的心脏组织中,赖氨酸特异性去甲基化酶4C (KDM4C)水平下调,并伴有H3K9Me3的减少,而KDM4C过表达通过去除启动子上的H3K9Me3修饰而触发SOS2表达。SOS2的下调减轻了KDM4C过表达的影响,从而加重了小鼠的HF。本研究发现,KDM4C通过恢复SOS2和PI3K/Akt信号通路,保护小鼠AMI后HF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting KDM4C Prevents Heart Failure after Acute Myocardial Infarction Via Activation of SOS2.

Here, we focused on the function of SOS2 in heart failure (HF) after acute myocardial infarction (AMI) and investigated the mechanism. An oxygen-glucose deprivation (OGD) model in HL-1 cardiomyocytes and the ligation of the left anterior descending coronary artery in mice were conducted for MI modeling. SOS2 was downregulated in the heart tissues of mice with AMI. SOS2 activated the PI3K/Akt signaling, thereby alleviating cardiomyocyte apoptosis and inflammatory response, which were compromised by PI3K/Akt signaling inhibitor LY294002. Lysine-specific demethylase 4C (KDM4C) levels were downregulated in the heart tissue of AMI mice and OGD-induced HL-1 cells, accompanied by a reduction in H3K9Me3, while KDM4C overexpression triggered SOS2 expression by removing H3K9Me3 modification from its promoter. Knockdown of SOS2 abated the effects of KDM4C overexpression, thereby accentuating HF in mice. This study revealed that KDM4C protected mice against HF following AMI by restoration of SOS2 and the PI3K/Akt signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信