{"title":"基于深度学习的心电图诊断的自适应小波基选择:强化学习方法","authors":"Qiao Xiao, Chaofeng Wang","doi":"10.1371/journal.pone.0318070","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocardiogram (ECG) signals are crucial in diagnosing cardiovascular diseases (CVDs). While wavelet-based feature extraction has demonstrated effectiveness in deep learning (DL)-based ECG diagnosis, selecting the optimal wavelet base poses a significant challenge, as it directly influences feature quality and diagnostic accuracy. Traditional methods typically rely on fixed wavelet bases chosen heuristically or through trial-and-error, which can fail to cover the distinct characteristics of individual ECG signals, leading to suboptimal performance. To address this limitation, we propose a reinforcement learning-based wavelet base selection (RLWBS) framework that dynamically customizes the wavelet base for each ECG signal. In this framework, a reinforcement learning (RL) agent iteratively optimizes its wavelet base selection (WBS) strategy based on successive feedback of classification performance, aiming to achieve progressively optimized feature extraction. Experiments conducted on the clinically collected PTB-XL dataset for ECG abnormality classification show that the proposed RLWBS framework could obtain more detailed time-frequency representation of ECG signals, yielding enhanced diagnostic performance compared to traditional WBS approaches.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0318070"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive wavelet base selection for deep learning-based ECG diagnosis: A reinforcement learning approach.\",\"authors\":\"Qiao Xiao, Chaofeng Wang\",\"doi\":\"10.1371/journal.pone.0318070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrocardiogram (ECG) signals are crucial in diagnosing cardiovascular diseases (CVDs). While wavelet-based feature extraction has demonstrated effectiveness in deep learning (DL)-based ECG diagnosis, selecting the optimal wavelet base poses a significant challenge, as it directly influences feature quality and diagnostic accuracy. Traditional methods typically rely on fixed wavelet bases chosen heuristically or through trial-and-error, which can fail to cover the distinct characteristics of individual ECG signals, leading to suboptimal performance. To address this limitation, we propose a reinforcement learning-based wavelet base selection (RLWBS) framework that dynamically customizes the wavelet base for each ECG signal. In this framework, a reinforcement learning (RL) agent iteratively optimizes its wavelet base selection (WBS) strategy based on successive feedback of classification performance, aiming to achieve progressively optimized feature extraction. Experiments conducted on the clinically collected PTB-XL dataset for ECG abnormality classification show that the proposed RLWBS framework could obtain more detailed time-frequency representation of ECG signals, yielding enhanced diagnostic performance compared to traditional WBS approaches.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 2\",\"pages\":\"e0318070\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0318070\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318070","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Adaptive wavelet base selection for deep learning-based ECG diagnosis: A reinforcement learning approach.
Electrocardiogram (ECG) signals are crucial in diagnosing cardiovascular diseases (CVDs). While wavelet-based feature extraction has demonstrated effectiveness in deep learning (DL)-based ECG diagnosis, selecting the optimal wavelet base poses a significant challenge, as it directly influences feature quality and diagnostic accuracy. Traditional methods typically rely on fixed wavelet bases chosen heuristically or through trial-and-error, which can fail to cover the distinct characteristics of individual ECG signals, leading to suboptimal performance. To address this limitation, we propose a reinforcement learning-based wavelet base selection (RLWBS) framework that dynamically customizes the wavelet base for each ECG signal. In this framework, a reinforcement learning (RL) agent iteratively optimizes its wavelet base selection (WBS) strategy based on successive feedback of classification performance, aiming to achieve progressively optimized feature extraction. Experiments conducted on the clinically collected PTB-XL dataset for ECG abnormality classification show that the proposed RLWBS framework could obtain more detailed time-frequency representation of ECG signals, yielding enhanced diagnostic performance compared to traditional WBS approaches.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage