John D Sakizadeh, Rachel Weiss, Gregory D Scholes, Bryan Kudisch
{"title":"光氧化催化的超快光谱学和动力学。","authors":"John D Sakizadeh, Rachel Weiss, Gregory D Scholes, Bryan Kudisch","doi":"10.1146/annurev-physchem-082423-013952","DOIUrl":null,"url":null,"abstract":"<p><p>Photoredox catalysis has emerged as a powerful platform for chemical synthesis, utilizing chromophore excited states as selective energy stores to surmount chemical activation barriers toward making desirable products. Developments in this field have pushed synthetic chemists to design and discover new photocatalysts with novel and impactful photoreactivity but also with uncharacterized excited states and only an approximate mechanistic understanding. This review highlights specific instances in which ultrafast spectroscopies dissected the photophysical and photochemical dynamics of new classes of photoredox catalysts and their photochemical reactions. After briefly introducing the photophysical processes and ultrafast spectroscopic methods central to this topic, the review describes selected recent examples that evoke distinct classes of photoredox catalysts with demonstrated synthetic utility and ultrafast spectroscopic characterization. This review cements the significant role of ultrafast spectroscopy in modern photocatalyzed organic transformations and institutionalizes the developing intersection of synthetic organic chemistry and physical chemistry.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Spectroscopy and Dynamics of Photoredox Catalysis.\",\"authors\":\"John D Sakizadeh, Rachel Weiss, Gregory D Scholes, Bryan Kudisch\",\"doi\":\"10.1146/annurev-physchem-082423-013952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photoredox catalysis has emerged as a powerful platform for chemical synthesis, utilizing chromophore excited states as selective energy stores to surmount chemical activation barriers toward making desirable products. Developments in this field have pushed synthetic chemists to design and discover new photocatalysts with novel and impactful photoreactivity but also with uncharacterized excited states and only an approximate mechanistic understanding. This review highlights specific instances in which ultrafast spectroscopies dissected the photophysical and photochemical dynamics of new classes of photoredox catalysts and their photochemical reactions. After briefly introducing the photophysical processes and ultrafast spectroscopic methods central to this topic, the review describes selected recent examples that evoke distinct classes of photoredox catalysts with demonstrated synthetic utility and ultrafast spectroscopic characterization. This review cements the significant role of ultrafast spectroscopy in modern photocatalyzed organic transformations and institutionalizes the developing intersection of synthetic organic chemistry and physical chemistry.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-082423-013952\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082423-013952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrafast Spectroscopy and Dynamics of Photoredox Catalysis.
Photoredox catalysis has emerged as a powerful platform for chemical synthesis, utilizing chromophore excited states as selective energy stores to surmount chemical activation barriers toward making desirable products. Developments in this field have pushed synthetic chemists to design and discover new photocatalysts with novel and impactful photoreactivity but also with uncharacterized excited states and only an approximate mechanistic understanding. This review highlights specific instances in which ultrafast spectroscopies dissected the photophysical and photochemical dynamics of new classes of photoredox catalysts and their photochemical reactions. After briefly introducing the photophysical processes and ultrafast spectroscopic methods central to this topic, the review describes selected recent examples that evoke distinct classes of photoredox catalysts with demonstrated synthetic utility and ultrafast spectroscopic characterization. This review cements the significant role of ultrafast spectroscopy in modern photocatalyzed organic transformations and institutionalizes the developing intersection of synthetic organic chemistry and physical chemistry.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.