纳米载体和巨噬细胞相互作用:从潜在障碍到替代治疗策略。

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.3762/bjnano.16.10
Naths Grazia Sukubo, Paolo Bigini, Annalisa Morelli
{"title":"纳米载体和巨噬细胞相互作用:从潜在障碍到替代治疗策略。","authors":"Naths Grazia Sukubo, Paolo Bigini, Annalisa Morelli","doi":"10.3762/bjnano.16.10","DOIUrl":null,"url":null,"abstract":"<p><p>In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"97-118"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy.\",\"authors\":\"Naths Grazia Sukubo, Paolo Bigini, Annalisa Morelli\",\"doi\":\"10.3762/bjnano.16.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"16 \",\"pages\":\"97-118\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.16.10\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.10","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在未来的几十年里,靶向给药纳米载体的发展将标志着药理学领域的重大进步。NCs可以提高药物的溶解度,确保精确分布,并能够通过生物屏障。尽管有这些潜在的优势,但必须考虑与许多生物基质,特别是与现有巨噬细胞的相互作用。在这篇综述中,我们将探讨巨噬细胞在NC递送中的双重作用,强调它们的生理功能,单核吞噬细胞系统带来的挑战,以及利用巨噬细胞相互作用获得治疗优势的创新策略。最近在肝脏和肺部疾病治疗方面的进展,特别是巨噬细胞极化和基于rna的治疗,突出了巨噬细胞- nc相互作用的潜在发展。此外,我们将深入研究纳米医学在神经病学和创伤学中与巨噬细胞相互作用相关的有趣潜力,以及它在未来的令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy.

In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信