结构方程建模框架中具有潜在变量、潜在过程、潜在变化和潜在类的非线性纵向过程的检验:R包nlpsem。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Jin Liu
{"title":"结构方程建模框架中具有潜在变量、潜在过程、潜在变化和潜在类的非线性纵向过程的检验:R包nlpsem。","authors":"Jin Liu","doi":"10.3758/s13428-025-02596-4","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the R package nlpsem (Liu, 2023), a comprehensive toolkit for analyzing longitudinal processes within the structural equation modeling (SEM) framework, incorporating individual measurement occasions. This package emphasizes nonlinear longitudinal models, especially intrinsic ones, across four key scenarios: (1) univariate longitudinal processes with latent variables, optionally including covariates such as time-invariant covariates (TICs) and time-varying covariates (TVCs); (2) multivariate longitudinal analyses to explore correlations or unidirectional relationships between longitudinal variables; (3) multiple-group frameworks for comparing manifest classes in scenarios (1) and (2); and (4) mixture models for scenarios (1) and (2), accommodating latent class heterogeneity. Built on the OpenMx R package, nlpsem supports flexible model designs and uses the full information maximum likelihood method for parameter estimation. A notable feature is its algorithm for determining initial values directly from raw data, improving computational efficiency and convergence. Furthermore, nlpsem provides tools for goodness-of-fit tests, cluster analyses, visualization, derivation of p values and three types of confidence intervals, as well as model selection for nested models using likelihood-ratio tests and for non-nested models based on criteria such as Akaike information criterion and Bayesian information criterion. This article serves as a companion document to the nlpsem R package, providing a comprehensive guide to its modeling capabilities, estimation methods, implementation features, and application examples using synthetic intelligence growth data.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 3","pages":"87"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination of nonlinear longitudinal processes with latent variables, latent processes, latent changes, and latent classes in the structural equation modeling framework: The R package nlpsem.\",\"authors\":\"Jin Liu\",\"doi\":\"10.3758/s13428-025-02596-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce the R package nlpsem (Liu, 2023), a comprehensive toolkit for analyzing longitudinal processes within the structural equation modeling (SEM) framework, incorporating individual measurement occasions. This package emphasizes nonlinear longitudinal models, especially intrinsic ones, across four key scenarios: (1) univariate longitudinal processes with latent variables, optionally including covariates such as time-invariant covariates (TICs) and time-varying covariates (TVCs); (2) multivariate longitudinal analyses to explore correlations or unidirectional relationships between longitudinal variables; (3) multiple-group frameworks for comparing manifest classes in scenarios (1) and (2); and (4) mixture models for scenarios (1) and (2), accommodating latent class heterogeneity. Built on the OpenMx R package, nlpsem supports flexible model designs and uses the full information maximum likelihood method for parameter estimation. A notable feature is its algorithm for determining initial values directly from raw data, improving computational efficiency and convergence. Furthermore, nlpsem provides tools for goodness-of-fit tests, cluster analyses, visualization, derivation of p values and three types of confidence intervals, as well as model selection for nested models using likelihood-ratio tests and for non-nested models based on criteria such as Akaike information criterion and Bayesian information criterion. This article serves as a companion document to the nlpsem R package, providing a comprehensive guide to its modeling capabilities, estimation methods, implementation features, and application examples using synthetic intelligence growth data.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 3\",\"pages\":\"87\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-025-02596-4\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02596-4","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了R包nlpsem (Liu, 2023),这是一个综合工具包,用于分析结构方程建模(SEM)框架内的纵向过程,并结合了单个测量场合。该软件包强调非线性纵向模型,特别是内在模型,跨越四个关键场景:(1)具有潜在变量的单变量纵向过程,可选地包括协变量,如时不变协变量(tic)和时变协变量(tvc);(2)多变量纵向分析,探究纵向变量之间的相关关系或单向关系;(3)用于比较场景(1)和(2)中的清单类的多组框架;(4)情景(1)和情景(2)的混合模型,以适应潜在的类别异质性。nlpsem基于OpenMx R软件包,支持灵活的模型设计,并使用全信息最大似然法进行参数估计。其显著特点是直接从原始数据中确定初值的算法,提高了计算效率和收敛性。此外,nlpsem还提供了拟合优度检验、聚类分析、可视化、p值推导和三种类型置信区间的工具,以及使用似然比检验对嵌套模型进行模型选择的工具,以及基于赤池信息准则和贝叶斯信息准则等标准对非嵌套模型进行模型选择的工具。本文作为nlpsem R包的配套文档,提供了有关其建模功能、评估方法、实现特性和使用合成智能增长数据的应用程序示例的全面指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examination of nonlinear longitudinal processes with latent variables, latent processes, latent changes, and latent classes in the structural equation modeling framework: The R package nlpsem.

We introduce the R package nlpsem (Liu, 2023), a comprehensive toolkit for analyzing longitudinal processes within the structural equation modeling (SEM) framework, incorporating individual measurement occasions. This package emphasizes nonlinear longitudinal models, especially intrinsic ones, across four key scenarios: (1) univariate longitudinal processes with latent variables, optionally including covariates such as time-invariant covariates (TICs) and time-varying covariates (TVCs); (2) multivariate longitudinal analyses to explore correlations or unidirectional relationships between longitudinal variables; (3) multiple-group frameworks for comparing manifest classes in scenarios (1) and (2); and (4) mixture models for scenarios (1) and (2), accommodating latent class heterogeneity. Built on the OpenMx R package, nlpsem supports flexible model designs and uses the full information maximum likelihood method for parameter estimation. A notable feature is its algorithm for determining initial values directly from raw data, improving computational efficiency and convergence. Furthermore, nlpsem provides tools for goodness-of-fit tests, cluster analyses, visualization, derivation of p values and three types of confidence intervals, as well as model selection for nested models using likelihood-ratio tests and for non-nested models based on criteria such as Akaike information criterion and Bayesian information criterion. This article serves as a companion document to the nlpsem R package, providing a comprehensive guide to its modeling capabilities, estimation methods, implementation features, and application examples using synthetic intelligence growth data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信