心理学研究中的交叉验证和预测指标:不要遗漏遗漏者。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Diego Iglesias, Miguel A Sorrel, Ricardo Olmos
{"title":"心理学研究中的交叉验证和预测指标:不要遗漏遗漏者。","authors":"Diego Iglesias, Miguel A Sorrel, Ricardo Olmos","doi":"10.3758/s13428-024-02588-w","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> and <math><mtext>MSE</mtext></math> metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 3","pages":"85"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-validation and predictive metrics in psychological research: Do not leave out the leave-one-out.\",\"authors\":\"Diego Iglesias, Miguel A Sorrel, Ricardo Olmos\",\"doi\":\"10.3758/s13428-024-02588-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> and <math><mtext>MSE</mtext></math> metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 3\",\"pages\":\"85\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02588-w\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02588-w","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在心理学研究中整合解释性和预测性研究实践的兴趣越来越大。为了使这种整合成功,心理学家的工具包必须包含能够直接估计预测误差的标准程序,例如交叉验证(CV)。尽管CV方法看起来很简单,但却很复杂,因此将它们适应于特定的环境和预测指标至关重要。本研究探讨了不同的CV方法在估计回归分析中r2和MSE指标的预测误差方面的表现,这些指标在心理学研究中普遍存在。目前的方法依赖于5倍或10倍的经验法则,或者依赖于预测值和观察值之间的平方相关性,在计算r2度量的预测误差时存在局限性,r2度量是行为科学中广泛使用的统计数据。我们建议使用一种替代方法来克服这些限制,并能够计算r2度量中的留一(LOO)。通过两次蒙特卡罗模拟研究以及将CV应用于多实验室复制项目的数据,我们表明LOO始终具有最佳性能。本研究中讨论的CV方法已在R包out2中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-validation and predictive metrics in psychological research: Do not leave out the leave-one-out.

There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the R 2 and MSE metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the R 2 metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the R 2 metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信