Justin C. Bui, Eric W. Lees, Andrew K. Liu, Wei Lun Toh, T. Nathan Stovall, Priyamvada Goyal, Francisco Javier U. Galang, Yogesh Surendranath, Alexis T. Bell, Adam Z. Weber
{"title":"离子特异性现象限制了正向偏置双极膜的能量回收","authors":"Justin C. Bui, Eric W. Lees, Andrew K. Liu, Wei Lun Toh, T. Nathan Stovall, Priyamvada Goyal, Francisco Javier U. Galang, Yogesh Surendranath, Alexis T. Bell, Adam Z. Weber","doi":"10.1038/s44286-024-00154-x","DOIUrl":null,"url":null,"abstract":"The ability for bipolar membranes (BPMs) to interconvert voltage and pH makes them attractive materials for use in energy conversion and storage. Reverse-biased BPMs, which use electrical voltage to dissociate water into acid and base, have become increasingly well studied. However, forward-biased BPMs (FB-BPMs), in which voltage is extracted from pH gradients through recombination, require further study. Here physics-based modeling elucidates how the complex coupling of transport and kinetics dictates the performance of FB-BPMs in electrochemical devices. Simulations reveal that the open-circuit potential of FB-BPMs is dictated by the balance of ion recombination and crossover, where recombination of buffering counter-ions attenuates the open-circuit potential. Counter-ion mass-transport limitations and uptake of ionic impurities limit achievable current densities by reducing the applied pH gradient or the available fixed-charge sites that mediate recombination. The model highlights the importance of selective ion management in mitigating energy losses and provides insight into the rational material design of FB-BPMs for energy applications. Forward-biased bipolar membranes (FB-BPMs), which recover potential from pH gradients through ion–ion recombination, show promise for application in sustainable devices. The authors use physics-based modeling to elucidate how ion-specific phenomena dictate performance, reveal how selective ion management can mitigate energy losses and provide insights into the rational design of next-generation FB-BPMs.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00154-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Ion-specific phenomena limit energy recovery in forward-biased bipolar membranes\",\"authors\":\"Justin C. Bui, Eric W. Lees, Andrew K. Liu, Wei Lun Toh, T. Nathan Stovall, Priyamvada Goyal, Francisco Javier U. Galang, Yogesh Surendranath, Alexis T. Bell, Adam Z. Weber\",\"doi\":\"10.1038/s44286-024-00154-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability for bipolar membranes (BPMs) to interconvert voltage and pH makes them attractive materials for use in energy conversion and storage. Reverse-biased BPMs, which use electrical voltage to dissociate water into acid and base, have become increasingly well studied. However, forward-biased BPMs (FB-BPMs), in which voltage is extracted from pH gradients through recombination, require further study. Here physics-based modeling elucidates how the complex coupling of transport and kinetics dictates the performance of FB-BPMs in electrochemical devices. Simulations reveal that the open-circuit potential of FB-BPMs is dictated by the balance of ion recombination and crossover, where recombination of buffering counter-ions attenuates the open-circuit potential. Counter-ion mass-transport limitations and uptake of ionic impurities limit achievable current densities by reducing the applied pH gradient or the available fixed-charge sites that mediate recombination. The model highlights the importance of selective ion management in mitigating energy losses and provides insight into the rational material design of FB-BPMs for energy applications. Forward-biased bipolar membranes (FB-BPMs), which recover potential from pH gradients through ion–ion recombination, show promise for application in sustainable devices. The authors use physics-based modeling to elucidate how ion-specific phenomena dictate performance, reveal how selective ion management can mitigate energy losses and provide insights into the rational design of next-generation FB-BPMs.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 1\",\"pages\":\"63-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44286-024-00154-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00154-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00154-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ion-specific phenomena limit energy recovery in forward-biased bipolar membranes
The ability for bipolar membranes (BPMs) to interconvert voltage and pH makes them attractive materials for use in energy conversion and storage. Reverse-biased BPMs, which use electrical voltage to dissociate water into acid and base, have become increasingly well studied. However, forward-biased BPMs (FB-BPMs), in which voltage is extracted from pH gradients through recombination, require further study. Here physics-based modeling elucidates how the complex coupling of transport and kinetics dictates the performance of FB-BPMs in electrochemical devices. Simulations reveal that the open-circuit potential of FB-BPMs is dictated by the balance of ion recombination and crossover, where recombination of buffering counter-ions attenuates the open-circuit potential. Counter-ion mass-transport limitations and uptake of ionic impurities limit achievable current densities by reducing the applied pH gradient or the available fixed-charge sites that mediate recombination. The model highlights the importance of selective ion management in mitigating energy losses and provides insight into the rational material design of FB-BPMs for energy applications. Forward-biased bipolar membranes (FB-BPMs), which recover potential from pH gradients through ion–ion recombination, show promise for application in sustainable devices. The authors use physics-based modeling to elucidate how ion-specific phenomena dictate performance, reveal how selective ion management can mitigate energy losses and provide insights into the rational design of next-generation FB-BPMs.