{"title":"超越电化学多孔固体电解质反应器中的分子转化","authors":"Ahmad Elgazzar, Haotian Wang","doi":"10.1038/s44286-024-00160-z","DOIUrl":null,"url":null,"abstract":"Electrolyzers have been refined to reach a minimized gap between the electrodes, exemplified by the ''zero gap'' membrane electrode assembly in water electrolyzers. This Comment discusses the porous solid electrolyte reactor, where this gap is re-opened to fully leverage ionic transport for broader applications beyond molecular transformations in electrolysis.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 1","pages":"3-7"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00160-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Beyond molecular transformations in electrochemical porous solid electrolyte reactors\",\"authors\":\"Ahmad Elgazzar, Haotian Wang\",\"doi\":\"10.1038/s44286-024-00160-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrolyzers have been refined to reach a minimized gap between the electrodes, exemplified by the ''zero gap'' membrane electrode assembly in water electrolyzers. This Comment discusses the porous solid electrolyte reactor, where this gap is re-opened to fully leverage ionic transport for broader applications beyond molecular transformations in electrolysis.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 1\",\"pages\":\"3-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44286-024-00160-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00160-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00160-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond molecular transformations in electrochemical porous solid electrolyte reactors
Electrolyzers have been refined to reach a minimized gap between the electrodes, exemplified by the ''zero gap'' membrane electrode assembly in water electrolyzers. This Comment discusses the porous solid electrolyte reactor, where this gap is re-opened to fully leverage ionic transport for broader applications beyond molecular transformations in electrolysis.