心血管感染的生物膜形成及治疗和预防的生物工程方法

Qi Tong, Qiyue Xu, Jie Cai, Yiren Sun, Zhengjie Wang, Yongjun Qian
{"title":"心血管感染的生物膜形成及治疗和预防的生物工程方法","authors":"Qi Tong,&nbsp;Qiyue Xu,&nbsp;Jie Cai,&nbsp;Yiren Sun,&nbsp;Zhengjie Wang,&nbsp;Yongjun Qian","doi":"10.1002/mba2.70003","DOIUrl":null,"url":null,"abstract":"<p>At present, cardiovascular infection such as infective endocarditis (IE) has become a major disease with a high mortality rate. The essence of IE is actually the infection associated with biofilm formation, which can occur not only on native heart valves, but also on prosthetic heart valves and cardiovascular implants such as left heart assist devices, vascular grafts, and pacemakers. Biofilms are bacterial aggregates that are composed of a self-produced extracellular polymeric substance (EPS), which is difficult and challenging for the treatment of cardiovascular infections. Therefore, it is important to explore and develop effective anti-biofilm methods for the treatment of biofilm-associated cardiovascular infection. This review provides comprehension of strategies for degrading EPS in biofilm, the application of nanodrug delivery systems for biofilm-related infections, the strategy for targeting drug resistance genes through gene editing technology and strategy for targeting quorum sensing in biofilm. Furthermore, this review also provides some strategies to optimize the antibacterial properties of cardiovascular implants to prevent biofilm formation. The applications of these strategies will provide novel preventive and therapeutic ways for biofilm-associated cardiovascular infections.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70003","citationCount":"0","resultStr":"{\"title\":\"Biofilm formation in cardiovascular infection and bioengineering approaches for treatment and prevention\",\"authors\":\"Qi Tong,&nbsp;Qiyue Xu,&nbsp;Jie Cai,&nbsp;Yiren Sun,&nbsp;Zhengjie Wang,&nbsp;Yongjun Qian\",\"doi\":\"10.1002/mba2.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At present, cardiovascular infection such as infective endocarditis (IE) has become a major disease with a high mortality rate. The essence of IE is actually the infection associated with biofilm formation, which can occur not only on native heart valves, but also on prosthetic heart valves and cardiovascular implants such as left heart assist devices, vascular grafts, and pacemakers. Biofilms are bacterial aggregates that are composed of a self-produced extracellular polymeric substance (EPS), which is difficult and challenging for the treatment of cardiovascular infections. Therefore, it is important to explore and develop effective anti-biofilm methods for the treatment of biofilm-associated cardiovascular infection. This review provides comprehension of strategies for degrading EPS in biofilm, the application of nanodrug delivery systems for biofilm-related infections, the strategy for targeting drug resistance genes through gene editing technology and strategy for targeting quorum sensing in biofilm. Furthermore, this review also provides some strategies to optimize the antibacterial properties of cardiovascular implants to prevent biofilm formation. The applications of these strategies will provide novel preventive and therapeutic ways for biofilm-associated cardiovascular infections.</p>\",\"PeriodicalId\":100901,\"journal\":{\"name\":\"MedComm – Biomaterials and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm – Biomaterials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,感染性心内膜炎(IE)等心血管感染已成为死亡率较高的主要疾病。IE的本质实际上是与生物膜形成相关的感染,它不仅可以发生在天然心脏瓣膜上,也可以发生在人工心脏瓣膜和心血管植入物上,如左心辅助装置、血管移植物和起搏器。生物膜是由自产的细胞外聚合物质(EPS)组成的细菌聚集体,是心血管感染治疗的难点和挑战。因此,探索和开发有效的抗生物膜方法治疗生物膜相关性心血管感染具有重要意义。本文综述了生物膜中EPS的降解策略、纳米药物递送系统在生物膜相关感染中的应用、通过基因编辑技术靶向耐药基因的策略以及生物膜中群体感应靶向策略。此外,本文还对优化心血管植入物的抗菌性能以防止生物膜的形成提出了一些策略。这些策略的应用将为生物膜相关性心血管感染的预防和治疗提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biofilm formation in cardiovascular infection and bioengineering approaches for treatment and prevention

Biofilm formation in cardiovascular infection and bioengineering approaches for treatment and prevention

At present, cardiovascular infection such as infective endocarditis (IE) has become a major disease with a high mortality rate. The essence of IE is actually the infection associated with biofilm formation, which can occur not only on native heart valves, but also on prosthetic heart valves and cardiovascular implants such as left heart assist devices, vascular grafts, and pacemakers. Biofilms are bacterial aggregates that are composed of a self-produced extracellular polymeric substance (EPS), which is difficult and challenging for the treatment of cardiovascular infections. Therefore, it is important to explore and develop effective anti-biofilm methods for the treatment of biofilm-associated cardiovascular infection. This review provides comprehension of strategies for degrading EPS in biofilm, the application of nanodrug delivery systems for biofilm-related infections, the strategy for targeting drug resistance genes through gene editing technology and strategy for targeting quorum sensing in biofilm. Furthermore, this review also provides some strategies to optimize the antibacterial properties of cardiovascular implants to prevent biofilm formation. The applications of these strategies will provide novel preventive and therapeutic ways for biofilm-associated cardiovascular infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信