利用自然衍生的可持续材料进行电化学储能:揭示其机理和应用

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Naman Sharma, Kirti Mishra, Nirankar Singh, Samarjeet Singh Siwal, Phil Hart, Vijay Kumar Thakur
{"title":"利用自然衍生的可持续材料进行电化学储能:揭示其机理和应用","authors":"Naman Sharma,&nbsp;Kirti Mishra,&nbsp;Nirankar Singh,&nbsp;Samarjeet Singh Siwal,&nbsp;Phil Hart,&nbsp;Vijay Kumar Thakur","doi":"10.1002/mame.202400129","DOIUrl":null,"url":null,"abstract":"<p>Recently, research all over the world is being carried out to develop eco-friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweight, and steady cycling performance—all crucial for utilizations involving wearable electronics and others. Given its abundance and extensive recycling behavior, cellulose is one of the most sustainable natural polymers requiring special attention. The paper discusses the various types of cellulose-based materials (CBMs), including nanocellulose, cellulose derivatives, and composites, as well as their synthesis methods and electrochemical properties. The review also highlights the performance of CBMs in SC applications, including their capacitance, cycling stability, and rate capability, along with recent advances in modifying the materials, such as surface modification and hybrid materials. Finally, the proposed topic is concluded with the current challenges and future prospects of CBMs for SC applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400129","citationCount":"0","resultStr":"{\"title\":\"Harnessing Nature-Derived Sustainable Materials for Electrochemical Energy Storage: Unveiling the Mechanism and Applications\",\"authors\":\"Naman Sharma,&nbsp;Kirti Mishra,&nbsp;Nirankar Singh,&nbsp;Samarjeet Singh Siwal,&nbsp;Phil Hart,&nbsp;Vijay Kumar Thakur\",\"doi\":\"10.1002/mame.202400129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, research all over the world is being carried out to develop eco-friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweight, and steady cycling performance—all crucial for utilizations involving wearable electronics and others. Given its abundance and extensive recycling behavior, cellulose is one of the most sustainable natural polymers requiring special attention. The paper discusses the various types of cellulose-based materials (CBMs), including nanocellulose, cellulose derivatives, and composites, as well as their synthesis methods and electrochemical properties. The review also highlights the performance of CBMs in SC applications, including their capacitance, cycling stability, and rate capability, along with recent advances in modifying the materials, such as surface modification and hybrid materials. Finally, the proposed topic is concluded with the current challenges and future prospects of CBMs for SC applications.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400129\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400129","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,世界各地都在研究利用蛋白质或多糖等生物聚合物材料开发生态友好型超级电容器(SCs)。这些聚合物为这些创新的储能设备提供了可持续性和可回收性、灵活性、轻质性和稳定的循环性能——所有这些对于可穿戴电子产品和其他应用都至关重要。鉴于其丰富和广泛的回收行为,纤维素是需要特别关注的最可持续的天然聚合物之一。本文讨论了各种类型的纤维素基材料(CBMs),包括纳米纤维素、纤维素衍生物和复合材料,以及它们的合成方法和电化学性能。该综述还强调了CBMs在SC应用中的性能,包括它们的电容、循环稳定性和速率能力,以及改性材料的最新进展,如表面改性和混合材料。最后,总结了目前CBMs在SC应用中的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Nature-Derived Sustainable Materials for Electrochemical Energy Storage: Unveiling the Mechanism and Applications

Harnessing Nature-Derived Sustainable Materials for Electrochemical Energy Storage: Unveiling the Mechanism and Applications

Recently, research all over the world is being carried out to develop eco-friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweight, and steady cycling performance—all crucial for utilizations involving wearable electronics and others. Given its abundance and extensive recycling behavior, cellulose is one of the most sustainable natural polymers requiring special attention. The paper discusses the various types of cellulose-based materials (CBMs), including nanocellulose, cellulose derivatives, and composites, as well as their synthesis methods and electrochemical properties. The review also highlights the performance of CBMs in SC applications, including their capacitance, cycling stability, and rate capability, along with recent advances in modifying the materials, such as surface modification and hybrid materials. Finally, the proposed topic is concluded with the current challenges and future prospects of CBMs for SC applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信