一种用于提高电动汽车动力系统转矩密度的改进型分定子磁通开关永磁电机

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sadjad Shafiei, Tohid Sharifi, Mohammad Ali Noroozi Dehdez, Mehdi Bagheri
{"title":"一种用于提高电动汽车动力系统转矩密度的改进型分定子磁通开关永磁电机","authors":"Sadjad Shafiei,&nbsp;Tohid Sharifi,&nbsp;Mohammad Ali Noroozi Dehdez,&nbsp;Mehdi Bagheri","doi":"10.1049/elp2.70000","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a modified partitioned-stator flux-switching permanent magnet (PS-FSPM) machine and reduces the permanent magnet usage in conventional PS-FSPM machines. To achieve this goal, the stators of the conventional PS-FSPM with outer-armature/inner-PM (OA/IPM PS-FSPM) structure are swapped to realise a PS-FSPM with outer-PM/inner-armature (OPM/IA PS-FSPM) design. The machine topology along with the operating principles are described in detail, and an analytical airgap permeance model is introduced for the proposed machine. The number of rotor modules, the widths of the magnets and rotor modules, as well as the split ratio (SR), are optimised through sensitivity analysis to achieve higher torque density and reduced torque ripple, compared with the conventional structure. Moreover, a flux barrier in the exterior surface of the outer stator is adopted to improve the proposed structure to reach a higher flux concentration in the airgap and reduce iron volume consumption. The thermal analysis results using the computational fluid dynamics modelling indicate that the temperatures of both insulation and permanent magnets remain within specified operating limits. Finally, apart from the finite element analysis (FEA), an experimental study is performed to evaluate the feasibility of fabricating a machine equipped with a high number of rotor modular teeth.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70000","citationCount":"0","resultStr":"{\"title\":\"A modified partitioned-stator flux-switching permanent magnet machine for enhancing torque-density in electric vehicle powertrains\",\"authors\":\"Sadjad Shafiei,&nbsp;Tohid Sharifi,&nbsp;Mohammad Ali Noroozi Dehdez,&nbsp;Mehdi Bagheri\",\"doi\":\"10.1049/elp2.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a modified partitioned-stator flux-switching permanent magnet (PS-FSPM) machine and reduces the permanent magnet usage in conventional PS-FSPM machines. To achieve this goal, the stators of the conventional PS-FSPM with outer-armature/inner-PM (OA/IPM PS-FSPM) structure are swapped to realise a PS-FSPM with outer-PM/inner-armature (OPM/IA PS-FSPM) design. The machine topology along with the operating principles are described in detail, and an analytical airgap permeance model is introduced for the proposed machine. The number of rotor modules, the widths of the magnets and rotor modules, as well as the split ratio (SR), are optimised through sensitivity analysis to achieve higher torque density and reduced torque ripple, compared with the conventional structure. Moreover, a flux barrier in the exterior surface of the outer stator is adopted to improve the proposed structure to reach a higher flux concentration in the airgap and reduce iron volume consumption. The thermal analysis results using the computational fluid dynamics modelling indicate that the temperatures of both insulation and permanent magnets remain within specified operating limits. Finally, apart from the finite element analysis (FEA), an experimental study is performed to evaluate the feasibility of fabricating a machine equipped with a high number of rotor modular teeth.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70000\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70000","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的分定子磁通开关永磁(PS-FSPM)电机,减少了传统PS-FSPM电机中永磁体的使用。为了实现这一目标,将传统外电枢/内电枢PS-FSPM (OA/IPM PS-FSPM)结构的定子进行交换,实现外电枢/内电枢PS-FSPM (OPM/IA PS-FSPM)设计。详细描述了机器的拓扑结构和工作原理,并介绍了该机器的气隙渗透解析模型。通过灵敏度分析优化了转子模块的数量、磁体和转子模块的宽度以及分割比(SR),与传统结构相比,实现了更高的转矩密度和更小的转矩脉动。此外,采用外定子外表面的磁通屏障来改进所提出的结构,以达到更高的磁通浓度在气隙中,减少铁体积消耗。计算流体力学模型的热分析结果表明,绝热体和永磁体的温度都保持在规定的工作范围内。最后,除了有限元分析(FEA)外,还进行了实验研究,以评估制造具有大量转子模块化齿的机器的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A modified partitioned-stator flux-switching permanent magnet machine for enhancing torque-density in electric vehicle powertrains

A modified partitioned-stator flux-switching permanent magnet machine for enhancing torque-density in electric vehicle powertrains

This study proposes a modified partitioned-stator flux-switching permanent magnet (PS-FSPM) machine and reduces the permanent magnet usage in conventional PS-FSPM machines. To achieve this goal, the stators of the conventional PS-FSPM with outer-armature/inner-PM (OA/IPM PS-FSPM) structure are swapped to realise a PS-FSPM with outer-PM/inner-armature (OPM/IA PS-FSPM) design. The machine topology along with the operating principles are described in detail, and an analytical airgap permeance model is introduced for the proposed machine. The number of rotor modules, the widths of the magnets and rotor modules, as well as the split ratio (SR), are optimised through sensitivity analysis to achieve higher torque density and reduced torque ripple, compared with the conventional structure. Moreover, a flux barrier in the exterior surface of the outer stator is adopted to improve the proposed structure to reach a higher flux concentration in the airgap and reduce iron volume consumption. The thermal analysis results using the computational fluid dynamics modelling indicate that the temperatures of both insulation and permanent magnets remain within specified operating limits. Finally, apart from the finite element analysis (FEA), an experimental study is performed to evaluate the feasibility of fabricating a machine equipped with a high number of rotor modular teeth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信