将纳米孔测序纳入色素失禁的多种诊断工具包

IF 3.3 2区 医学 Q2 GENETICS & HEREDITY
Simone Ahting, Denny Popp, Henry Oppermann, Vincent Strehlow, Maria Fasshauer, Bernt Popp, Maike Karnstedt, Isabell Schumann
{"title":"将纳米孔测序纳入色素失禁的多种诊断工具包","authors":"Simone Ahting,&nbsp;Denny Popp,&nbsp;Henry Oppermann,&nbsp;Vincent Strehlow,&nbsp;Maria Fasshauer,&nbsp;Bernt Popp,&nbsp;Maike Karnstedt,&nbsp;Isabell Schumann","doi":"10.1155/humu/6657400","DOIUrl":null,"url":null,"abstract":"<p>Incontinentia pigmenti (IP) is a rare hereditary disorder affecting 1.2 in 100,000 live births, predominantly females. Genetic analysis of IP is complicated by a homologous pseudogene, making conventional short-read sequencing challenging. While long-range PCR is typically used to overcome this, skewed X-inactivation detection can also aid in assigning variants to <i>IKBKG</i>. We employed a comprehensive approach, incorporating whole-exome sequencing (WES), long-range PCR, RT-PCR, X-inactivation analysis, and nanopore sequencing, to identify and accurately phase a small heterozygous deletion, NM_001099857.5: c.363_367del, p.(Leu122Glyfs <sup>∗</sup>14), in the <i>IKBKG</i> gene in an IP-affected family. The deletion was initially detected via WES, with skewed X-inactivation observed in both the proband and her mother. Long-range PCR specific to <i>IKBKG</i> confirmed the variant’s location in the <i>IKBKG</i> gene, not in the pseudogene. On the RNA level, the variant was undetectable, suggesting nonsense-mediated decay of the transcript. Nanopore sequencing precisely mapped the variant to <i>IKBKG</i> and analyzed the methylation status of both alleles, confirming the skewed X-inactivation, with the variant-carrying allele predominantly inactivated. This demonstrates the nanopore sequencing’s value in genetic diagnosis, enabling precise variant localization and analysis of X chromosome activation status in females with skewed X-inactivation, aiding in accurate diagnosis and understanding of IP.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/6657400","citationCount":"0","resultStr":"{\"title\":\"Incorporating Nanopore Sequencing Into a Diverse Diagnostic Toolkit for Incontinentia Pigmenti\",\"authors\":\"Simone Ahting,&nbsp;Denny Popp,&nbsp;Henry Oppermann,&nbsp;Vincent Strehlow,&nbsp;Maria Fasshauer,&nbsp;Bernt Popp,&nbsp;Maike Karnstedt,&nbsp;Isabell Schumann\",\"doi\":\"10.1155/humu/6657400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Incontinentia pigmenti (IP) is a rare hereditary disorder affecting 1.2 in 100,000 live births, predominantly females. Genetic analysis of IP is complicated by a homologous pseudogene, making conventional short-read sequencing challenging. While long-range PCR is typically used to overcome this, skewed X-inactivation detection can also aid in assigning variants to <i>IKBKG</i>. We employed a comprehensive approach, incorporating whole-exome sequencing (WES), long-range PCR, RT-PCR, X-inactivation analysis, and nanopore sequencing, to identify and accurately phase a small heterozygous deletion, NM_001099857.5: c.363_367del, p.(Leu122Glyfs <sup>∗</sup>14), in the <i>IKBKG</i> gene in an IP-affected family. The deletion was initially detected via WES, with skewed X-inactivation observed in both the proband and her mother. Long-range PCR specific to <i>IKBKG</i> confirmed the variant’s location in the <i>IKBKG</i> gene, not in the pseudogene. On the RNA level, the variant was undetectable, suggesting nonsense-mediated decay of the transcript. Nanopore sequencing precisely mapped the variant to <i>IKBKG</i> and analyzed the methylation status of both alleles, confirming the skewed X-inactivation, with the variant-carrying allele predominantly inactivated. This demonstrates the nanopore sequencing’s value in genetic diagnosis, enabling precise variant localization and analysis of X chromosome activation status in females with skewed X-inactivation, aiding in accurate diagnosis and understanding of IP.</p>\",\"PeriodicalId\":13061,\"journal\":{\"name\":\"Human Mutation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/6657400\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Mutation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/humu/6657400\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/6657400","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

色素失禁(IP)是一种罕见的遗传性疾病,每10万活产婴儿中就有1.2人患病,主要是女性。IP的遗传分析由于同源假基因而变得复杂,使得传统的短读测序具有挑战性。虽然远程PCR通常用于克服这一问题,但倾斜的x失活检测也有助于将变异分配给IKBKG。我们采用综合的方法,结合全外显子组测序(WES)、远程PCR、RT-PCR、x -失活分析和纳米孔测序,鉴定并准确地分相一个小杂合缺失,NM_001099857.5: c.363_367del, p.(Leu122Glyfs∗14),在一个ip影响家族的IKBKG基因。这种缺失最初是通过WES检测到的,在先证者和她的母亲身上都观察到偏x失活。IKBKG特异性的远程PCR证实该变异位于IKBKG基因中,而不是假基因中。在RNA水平上,这种变异是无法检测到的,这表明无义介导的转录物衰变。纳米孔测序精确地将变异定位到IKBKG上,并分析了两个等位基因的甲基化状态,证实了偏x失活,携带变异的等位基因主要失活。这证明了纳米孔测序在遗传诊断中的价值,可以精确定位变异并分析X染色体失活偏态女性的X染色体激活状态,有助于准确诊断和理解IP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Incorporating Nanopore Sequencing Into a Diverse Diagnostic Toolkit for Incontinentia Pigmenti

Incorporating Nanopore Sequencing Into a Diverse Diagnostic Toolkit for Incontinentia Pigmenti

Incontinentia pigmenti (IP) is a rare hereditary disorder affecting 1.2 in 100,000 live births, predominantly females. Genetic analysis of IP is complicated by a homologous pseudogene, making conventional short-read sequencing challenging. While long-range PCR is typically used to overcome this, skewed X-inactivation detection can also aid in assigning variants to IKBKG. We employed a comprehensive approach, incorporating whole-exome sequencing (WES), long-range PCR, RT-PCR, X-inactivation analysis, and nanopore sequencing, to identify and accurately phase a small heterozygous deletion, NM_001099857.5: c.363_367del, p.(Leu122Glyfs 14), in the IKBKG gene in an IP-affected family. The deletion was initially detected via WES, with skewed X-inactivation observed in both the proband and her mother. Long-range PCR specific to IKBKG confirmed the variant’s location in the IKBKG gene, not in the pseudogene. On the RNA level, the variant was undetectable, suggesting nonsense-mediated decay of the transcript. Nanopore sequencing precisely mapped the variant to IKBKG and analyzed the methylation status of both alleles, confirming the skewed X-inactivation, with the variant-carrying allele predominantly inactivated. This demonstrates the nanopore sequencing’s value in genetic diagnosis, enabling precise variant localization and analysis of X chromosome activation status in females with skewed X-inactivation, aiding in accurate diagnosis and understanding of IP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Mutation
Human Mutation 医学-遗传学
CiteScore
8.40
自引率
5.10%
发文量
190
审稿时长
2 months
期刊介绍: Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信