无源熔盐快堆自然循环驱动运行多物理场分析及导流结构影响

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Juhyeong Lee, Min Seop Song, Seungug Jae, Won Sik Yang, Sung Joong Kim
{"title":"无源熔盐快堆自然循环驱动运行多物理场分析及导流结构影响","authors":"Juhyeong Lee,&nbsp;Min Seop Song,&nbsp;Seungug Jae,&nbsp;Won Sik Yang,&nbsp;Sung Joong Kim","doi":"10.1155/er/6052359","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A new molten salt reactor (MSR) design has been developed aiming for long-term operation and high safety. In order to enhance the integrity and economy of the system during the long-term operation, pumps were removed from the primary system, and the fuel salt flow was developed by natural circulation. In terms of thermal–fluidic, the natural circulation operation without a pump increases the reactor safety and resistance to accidents. The normal operation feasibility of the reactor was evaluated with the multiphysics analysis conducted with the Generalized Nuclear Foam (GeN-Foam) code. It was shown that the reactor can maintain stable power under a fixed heat exchanger outlet temperature condition. To increase the natural circulation, the active core region was designed to have a simple cylindrical shape, which induced a stagnation zone with slow velocity near the side wall. Due to the slow velocity, the stagnation zone has a substantially high temperature, and a flow guide was introduced to mitigate the stagnation effect. The impact of the flow guide was evaluated, including the reactivity feedback and delayed neutron precursor drift effect. The results highlight the importance of analyzing the flow distribution within the core in an MSR and demonstrate the effectiveness of the guide structure in ensuring stable core flow.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/6052359","citationCount":"0","resultStr":"{\"title\":\"Multiphysics Analysis of Natural Circulation-Driven Operation of Passive Molten Salt Fast Reactor and Effect of Guide Structure\",\"authors\":\"Juhyeong Lee,&nbsp;Min Seop Song,&nbsp;Seungug Jae,&nbsp;Won Sik Yang,&nbsp;Sung Joong Kim\",\"doi\":\"10.1155/er/6052359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>A new molten salt reactor (MSR) design has been developed aiming for long-term operation and high safety. In order to enhance the integrity and economy of the system during the long-term operation, pumps were removed from the primary system, and the fuel salt flow was developed by natural circulation. In terms of thermal–fluidic, the natural circulation operation without a pump increases the reactor safety and resistance to accidents. The normal operation feasibility of the reactor was evaluated with the multiphysics analysis conducted with the Generalized Nuclear Foam (GeN-Foam) code. It was shown that the reactor can maintain stable power under a fixed heat exchanger outlet temperature condition. To increase the natural circulation, the active core region was designed to have a simple cylindrical shape, which induced a stagnation zone with slow velocity near the side wall. Due to the slow velocity, the stagnation zone has a substantially high temperature, and a flow guide was introduced to mitigate the stagnation effect. The impact of the flow guide was evaluated, including the reactivity feedback and delayed neutron precursor drift effect. The results highlight the importance of analyzing the flow distribution within the core in an MSR and demonstrate the effectiveness of the guide structure in ensuring stable core flow.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/6052359\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/6052359\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/6052359","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

以长期运行和高安全性为目标,提出了一种新型熔盐堆设计方案。为了在长期运行中提高系统的完整性和经济性,将泵从一次系统中移除,采用自然循环的方式发展燃料盐流。在热流体方面,无需泵的自然循环运行增加了反应堆的安全性和抗事故能力。用通用核泡沫(GeN-Foam)程序进行了多物理场分析,对反应堆正常运行的可行性进行了评估。结果表明,在一定的换热器出口温度条件下,反应器能保持稳定的功率。为了增加自然循环,活动核心区被设计成一个简单的圆柱形,这在侧壁附近形成了一个慢速停滞区。由于速度较慢,滞止区温度较高,因此引入了导流器来缓解滞止效应。评估了导流器的影响,包括反应性反馈和延迟中子前驱体漂移效应。研究结果强调了在MSR中分析岩心内流动分布的重要性,并证明了导向结构在保证岩心流动稳定方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiphysics Analysis of Natural Circulation-Driven Operation of Passive Molten Salt Fast Reactor and Effect of Guide Structure

Multiphysics Analysis of Natural Circulation-Driven Operation of Passive Molten Salt Fast Reactor and Effect of Guide Structure

A new molten salt reactor (MSR) design has been developed aiming for long-term operation and high safety. In order to enhance the integrity and economy of the system during the long-term operation, pumps were removed from the primary system, and the fuel salt flow was developed by natural circulation. In terms of thermal–fluidic, the natural circulation operation without a pump increases the reactor safety and resistance to accidents. The normal operation feasibility of the reactor was evaluated with the multiphysics analysis conducted with the Generalized Nuclear Foam (GeN-Foam) code. It was shown that the reactor can maintain stable power under a fixed heat exchanger outlet temperature condition. To increase the natural circulation, the active core region was designed to have a simple cylindrical shape, which induced a stagnation zone with slow velocity near the side wall. Due to the slow velocity, the stagnation zone has a substantially high temperature, and a flow guide was introduced to mitigate the stagnation effect. The impact of the flow guide was evaluated, including the reactivity feedback and delayed neutron precursor drift effect. The results highlight the importance of analyzing the flow distribution within the core in an MSR and demonstrate the effectiveness of the guide structure in ensuring stable core flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信