主动阻尼法增强MTDC网络故障后恢复

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Monika Sharma, José L. Rueda Torres
{"title":"主动阻尼法增强MTDC网络故障后恢复","authors":"Monika Sharma,&nbsp;José L. Rueda Torres","doi":"10.1049/gtd2.13321","DOIUrl":null,"url":null,"abstract":"<p>The increasing deployment of offshore wind farms necessitates robust and stable high-voltage direct current networks. Achieving optimal stability, especially in damping oscillations on the DC side, remains a significant challenge. This study focuses on mitigating post-fault converter de-blocking oscillations, a critical issue exacerbated by complex interactions between AC and DC systems, converter dynamics, and system faults. These behavior are governed by nonlinear system dynamics, making traditional control methods less effective in ensuring stability. A comprehensive analysis of DC side oscillations and their interaction with converter dynamics is developed to understand the key factors influencing system stability. The research investigates a DC voltage regulation damping approach, identified as the most effective solution in the literature. Comprehensive parametric sensitivity analysis evaluates system behavior under diverse operational conditions. Addressing current damping method limitations during converter de-blocking, this work proposes an innovative control approach integrating fuzzy logic control and proportional–integral controllers. This approach enhances DC voltage regulation and incorporates a modified circulating current suppression control in the inner loop. The coordinated fuzzy logic control and proportional–integral controller dynamically adjusts to nonlinear system dynamics in real-time, providing a robust framework for improved post-fault recovery. It aims to achieve faster recovery times and reduced overshoot compared to conventional methods. The proposed controller's efficacy is validated through comparative analysis with existing approaches. Electromagnetic transient) simulations using the real-time digital simulator platform demonstrate the controller's performance under realistic operating conditions.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13321","citationCount":"0","resultStr":"{\"title\":\"Enhanced post-fault recovery in MTDC networks using active damping approach\",\"authors\":\"Monika Sharma,&nbsp;José L. Rueda Torres\",\"doi\":\"10.1049/gtd2.13321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing deployment of offshore wind farms necessitates robust and stable high-voltage direct current networks. Achieving optimal stability, especially in damping oscillations on the DC side, remains a significant challenge. This study focuses on mitigating post-fault converter de-blocking oscillations, a critical issue exacerbated by complex interactions between AC and DC systems, converter dynamics, and system faults. These behavior are governed by nonlinear system dynamics, making traditional control methods less effective in ensuring stability. A comprehensive analysis of DC side oscillations and their interaction with converter dynamics is developed to understand the key factors influencing system stability. The research investigates a DC voltage regulation damping approach, identified as the most effective solution in the literature. Comprehensive parametric sensitivity analysis evaluates system behavior under diverse operational conditions. Addressing current damping method limitations during converter de-blocking, this work proposes an innovative control approach integrating fuzzy logic control and proportional–integral controllers. This approach enhances DC voltage regulation and incorporates a modified circulating current suppression control in the inner loop. The coordinated fuzzy logic control and proportional–integral controller dynamically adjusts to nonlinear system dynamics in real-time, providing a robust framework for improved post-fault recovery. It aims to achieve faster recovery times and reduced overshoot compared to conventional methods. The proposed controller's efficacy is validated through comparative analysis with existing approaches. Electromagnetic transient) simulations using the real-time digital simulator platform demonstrate the controller's performance under realistic operating conditions.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13321\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13321","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的海上风电场部署需要强大而稳定的高压直流网络。实现最佳稳定性,特别是在直流侧阻尼振荡方面,仍然是一个重大挑战。本研究的重点是减轻故障后变流器的去阻塞振荡,这是一个由交直流系统、变流器动力学和系统故障之间复杂的相互作用加剧的关键问题。这些行为是由非线性系统动力学控制的,使得传统的控制方法在保证稳定性方面效果较差。对直流侧振荡及其与变换器动力学的相互作用进行了全面分析,以了解影响系统稳定性的关键因素。该研究调查了直流电压调节阻尼方法,被认为是文献中最有效的解决方案。综合参数敏感性分析评估系统在不同运行条件下的行为。针对变换器去阻塞过程中电流阻尼方法的局限性,本工作提出了一种集成模糊逻辑控制和比例积分控制器的创新控制方法。这种方法增强了直流电压调节,并在内环中加入了改进的循环电流抑制控制。协调模糊逻辑控制和比例积分控制器实时动态调整非线性系统动态,为改进故障后恢复提供了鲁棒框架。与传统方法相比,它旨在实现更快的恢复时间和更少的超调。通过与现有方法的对比分析,验证了所提控制器的有效性。利用实时数字仿真平台进行了电磁瞬变仿真,验证了控制器在实际工作条件下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced post-fault recovery in MTDC networks using active damping approach

Enhanced post-fault recovery in MTDC networks using active damping approach

The increasing deployment of offshore wind farms necessitates robust and stable high-voltage direct current networks. Achieving optimal stability, especially in damping oscillations on the DC side, remains a significant challenge. This study focuses on mitigating post-fault converter de-blocking oscillations, a critical issue exacerbated by complex interactions between AC and DC systems, converter dynamics, and system faults. These behavior are governed by nonlinear system dynamics, making traditional control methods less effective in ensuring stability. A comprehensive analysis of DC side oscillations and their interaction with converter dynamics is developed to understand the key factors influencing system stability. The research investigates a DC voltage regulation damping approach, identified as the most effective solution in the literature. Comprehensive parametric sensitivity analysis evaluates system behavior under diverse operational conditions. Addressing current damping method limitations during converter de-blocking, this work proposes an innovative control approach integrating fuzzy logic control and proportional–integral controllers. This approach enhances DC voltage regulation and incorporates a modified circulating current suppression control in the inner loop. The coordinated fuzzy logic control and proportional–integral controller dynamically adjusts to nonlinear system dynamics in real-time, providing a robust framework for improved post-fault recovery. It aims to achieve faster recovery times and reduced overshoot compared to conventional methods. The proposed controller's efficacy is validated through comparative analysis with existing approaches. Electromagnetic transient) simulations using the real-time digital simulator platform demonstrate the controller's performance under realistic operating conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信