{"title":"杂化Si(111) -(双)蒽光电极界面电位下降对氧化还原偶依赖电压的影响","authors":"Hark Jin Kim, Michael J. Rose","doi":"10.1002/celc.202400468","DOIUrl":null,"url":null,"abstract":"<p>We investigate the flat band voltage (<i>V</i><sub>FB</sub>) of silicon (Si) surfaces functionalized with methyl (Me), 9-anthracene (Anth), 1,8-anthracene (DiAnth; two attachment points), and 9-bianthracene (BiAnth) on <i>n</i>-type and <i>p</i>-type Si substrates. Flat band potential (<i>E</i><sub>FB</sub>, by Mott-Schottky) provided <i>V</i><sub>FB</sub> (or <i>V</i><sub>BI</sub>) dependent on the contacted redox couple (<i>E</i><sub>Redox</sub>). On <i>p</i>-type Si, <i>V</i><sub>FB</sub> increased linearly until a limiting value was reached; similarly, the <i>n</i>-type Si <i>V</i><sub>FB</sub> decreased linearly until it plateaued at more negative potentials. Notably, the slope of <i>V</i><sub>FB</sub> depended on the surface modifier, exhibiting opposite trends for <i>p</i>-type and <i>n</i>-type Si. Curiously, anthracene-functionalized <i>p</i>-Si exhibited an unexpectedly more shallow (and beneficial) slope than -methyl, attributed to the polarizability of the anthracene π electron cloud and a potential drop across the molecular interface. On <i>n</i>-type Si, anthracene-functionalized surfaces displayed a higher slope than -methyl, suggesting a gradual cancellation of the voltage shift effect due to a fixed surface dipole. We also quantified the interfacial potential drop across p-Si–Anth as 275 mV using variable frequency (10 kHz vs 1 kHz) Mott-Schottky analysis. The interfacial potential drop and dipoles that result from molecular functionalization are thus critical design parameters for PEC cells that utilize moderate-potential redox couples or reactions; however, such effects are negligible with redox couples that reside at or beyond the semiconductor band-edge.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 24","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400468","citationCount":"0","resultStr":"{\"title\":\"Role of Interfacial Potential Drops on Redox-Couple Dependent Voltages Using Hybridized Si(111)–(Bis)Anthracene Photoelectrodes\",\"authors\":\"Hark Jin Kim, Michael J. Rose\",\"doi\":\"10.1002/celc.202400468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the flat band voltage (<i>V</i><sub>FB</sub>) of silicon (Si) surfaces functionalized with methyl (Me), 9-anthracene (Anth), 1,8-anthracene (DiAnth; two attachment points), and 9-bianthracene (BiAnth) on <i>n</i>-type and <i>p</i>-type Si substrates. Flat band potential (<i>E</i><sub>FB</sub>, by Mott-Schottky) provided <i>V</i><sub>FB</sub> (or <i>V</i><sub>BI</sub>) dependent on the contacted redox couple (<i>E</i><sub>Redox</sub>). On <i>p</i>-type Si, <i>V</i><sub>FB</sub> increased linearly until a limiting value was reached; similarly, the <i>n</i>-type Si <i>V</i><sub>FB</sub> decreased linearly until it plateaued at more negative potentials. Notably, the slope of <i>V</i><sub>FB</sub> depended on the surface modifier, exhibiting opposite trends for <i>p</i>-type and <i>n</i>-type Si. Curiously, anthracene-functionalized <i>p</i>-Si exhibited an unexpectedly more shallow (and beneficial) slope than -methyl, attributed to the polarizability of the anthracene π electron cloud and a potential drop across the molecular interface. On <i>n</i>-type Si, anthracene-functionalized surfaces displayed a higher slope than -methyl, suggesting a gradual cancellation of the voltage shift effect due to a fixed surface dipole. We also quantified the interfacial potential drop across p-Si–Anth as 275 mV using variable frequency (10 kHz vs 1 kHz) Mott-Schottky analysis. The interfacial potential drop and dipoles that result from molecular functionalization are thus critical design parameters for PEC cells that utilize moderate-potential redox couples or reactions; however, such effects are negligible with redox couples that reside at or beyond the semiconductor band-edge.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 24\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400468\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400468\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400468","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
我们调查的平带电压(VFB)硅(Si)表面携带甲基(我),9-anthracene(尖刺外壳),8-anthracene (DiAnth;n型和p型Si衬底上的两个附着点)和9-bianthracene (BiAnth)。平坦带电位(EFB,由Mott-Schottky)提供的VFB(或VBI)依赖于接触的氧化还原对(ERedox)。在p型Si上,VFB呈线性增加,直至达到极限值;同样,n型Si VFB线性下降,直到在更多负电位处趋于稳定。值得注意的是,VFB的斜率取决于表面改性剂,p型和n型Si呈现相反的趋势。奇怪的是,蒽功能化的p-Si比-甲基表现出意想不到的更浅(和有益)的斜率,这归因于蒽π电子云的极化性和分子界面上的电位下降。在n型Si上,蒽基功能化表面显示出比甲基更高的斜率,这表明由于固定的表面偶极子,电压漂移效应逐渐消除。我们还使用变频(10 kHz vs 1 kHz)莫特-肖特基分析将p-Si-Anth的界面电位降量化为275 mV。因此,分子功能化导致的界面电位下降和偶极子是利用中电位氧化还原偶对或反应的PEC细胞的关键设计参数;然而,这种影响是可以忽略不计的氧化还原对驻留在或超越半导体带边缘。
Role of Interfacial Potential Drops on Redox-Couple Dependent Voltages Using Hybridized Si(111)–(Bis)Anthracene Photoelectrodes
We investigate the flat band voltage (VFB) of silicon (Si) surfaces functionalized with methyl (Me), 9-anthracene (Anth), 1,8-anthracene (DiAnth; two attachment points), and 9-bianthracene (BiAnth) on n-type and p-type Si substrates. Flat band potential (EFB, by Mott-Schottky) provided VFB (or VBI) dependent on the contacted redox couple (ERedox). On p-type Si, VFB increased linearly until a limiting value was reached; similarly, the n-type Si VFB decreased linearly until it plateaued at more negative potentials. Notably, the slope of VFB depended on the surface modifier, exhibiting opposite trends for p-type and n-type Si. Curiously, anthracene-functionalized p-Si exhibited an unexpectedly more shallow (and beneficial) slope than -methyl, attributed to the polarizability of the anthracene π electron cloud and a potential drop across the molecular interface. On n-type Si, anthracene-functionalized surfaces displayed a higher slope than -methyl, suggesting a gradual cancellation of the voltage shift effect due to a fixed surface dipole. We also quantified the interfacial potential drop across p-Si–Anth as 275 mV using variable frequency (10 kHz vs 1 kHz) Mott-Schottky analysis. The interfacial potential drop and dipoles that result from molecular functionalization are thus critical design parameters for PEC cells that utilize moderate-potential redox couples or reactions; however, such effects are negligible with redox couples that reside at or beyond the semiconductor band-edge.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.