风暴潮屏障性能-屏障失效对极端水位频率的影响

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
L. F. Mooyaart, A. M. R. Bakker, J. A. van den Bogaard, R. E. Jorissen, T. Rijcken, S. N. Jonkman
{"title":"风暴潮屏障性能-屏障失效对极端水位频率的影响","authors":"L. F. Mooyaart,&nbsp;A. M. R. Bakker,&nbsp;J. A. van den Bogaard,&nbsp;R. E. Jorissen,&nbsp;T. Rijcken,&nbsp;S. N. Jonkman","doi":"10.1111/jfr3.13048","DOIUrl":null,"url":null,"abstract":"<p>Sea level rise necessitates the upgrade of coastal flood protection including storm surge barriers. These large movable hydraulic structures are open in normal conditions, but close during a storm surge to prevent coastal floods in bays and estuaries. Barrier improvements lower their susceptibility to operational, structural, or height-related failures. However, there is no method to determine the relative importance of these three barrier failure types. Here, we present a probabilistic method to systematically organize barrier failures and storm conditions to establish exceedance frequencies of extreme water levels behind the barrier. The method is illustrated by an assessment of extreme water level frequencies at Rotterdam (The Netherlands), which is protected by the Maeslant barrier. Four combinations of barrier states and storm conditions were analyzed and prioritized in the following order: (1) an operational failure with 1/100 year storm conditions, (2) a successful closure with an extreme (~1/1000 year) river discharge accumulating behind the barrier, (3) structural failure, and (4) insufficient height both with extreme storm conditions (10<sup>–6</sup> year). The case study confirmed the method's ability to systematically explore promising barrier improvements to adapt to sea level rise, in this case, lowering the susceptibility toward operational failures.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13048","citationCount":"0","resultStr":"{\"title\":\"Storm surge barrier performance—The effect of barrier failures on extreme water level frequencies\",\"authors\":\"L. F. Mooyaart,&nbsp;A. M. R. Bakker,&nbsp;J. A. van den Bogaard,&nbsp;R. E. Jorissen,&nbsp;T. Rijcken,&nbsp;S. N. Jonkman\",\"doi\":\"10.1111/jfr3.13048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sea level rise necessitates the upgrade of coastal flood protection including storm surge barriers. These large movable hydraulic structures are open in normal conditions, but close during a storm surge to prevent coastal floods in bays and estuaries. Barrier improvements lower their susceptibility to operational, structural, or height-related failures. However, there is no method to determine the relative importance of these three barrier failure types. Here, we present a probabilistic method to systematically organize barrier failures and storm conditions to establish exceedance frequencies of extreme water levels behind the barrier. The method is illustrated by an assessment of extreme water level frequencies at Rotterdam (The Netherlands), which is protected by the Maeslant barrier. Four combinations of barrier states and storm conditions were analyzed and prioritized in the following order: (1) an operational failure with 1/100 year storm conditions, (2) a successful closure with an extreme (~1/1000 year) river discharge accumulating behind the barrier, (3) structural failure, and (4) insufficient height both with extreme storm conditions (10<sup>–6</sup> year). The case study confirmed the method's ability to systematically explore promising barrier improvements to adapt to sea level rise, in this case, lowering the susceptibility toward operational failures.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13048\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13048","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海平面上升要求沿海防洪升级,包括风暴潮屏障。这些大型可移动水工结构在正常情况下是开放的,但在风暴潮期间关闭,以防止海湾和河口的沿海洪水。屏障的改进降低了它们对操作、结构或高度相关故障的敏感性。然而,没有办法确定这三种屏障破坏类型的相对重要性。在这里,我们提出了一种概率方法来系统地组织屏障失效和风暴条件,以建立屏障后面极端水位的超出频率。该方法通过对鹿特丹(荷兰)极端水位频率的评估来说明,鹿特丹受到Maeslant屏障的保护。分析了屏障状态和风暴条件的四种组合,并按以下顺序进行了优先排序:(1)1/100年风暴条件下的操作失败,(2)极端(~1/1000年)河流流量积聚在屏障后面的成功关闭,(3)极端风暴条件(10-6年)下的结构破坏和(4)高度不足。案例研究证实了该方法能够系统地探索有希望的屏障改进,以适应海平面上升,在这种情况下,降低对操作失败的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Storm surge barrier performance—The effect of barrier failures on extreme water level frequencies

Storm surge barrier performance—The effect of barrier failures on extreme water level frequencies

Sea level rise necessitates the upgrade of coastal flood protection including storm surge barriers. These large movable hydraulic structures are open in normal conditions, but close during a storm surge to prevent coastal floods in bays and estuaries. Barrier improvements lower their susceptibility to operational, structural, or height-related failures. However, there is no method to determine the relative importance of these three barrier failure types. Here, we present a probabilistic method to systematically organize barrier failures and storm conditions to establish exceedance frequencies of extreme water levels behind the barrier. The method is illustrated by an assessment of extreme water level frequencies at Rotterdam (The Netherlands), which is protected by the Maeslant barrier. Four combinations of barrier states and storm conditions were analyzed and prioritized in the following order: (1) an operational failure with 1/100 year storm conditions, (2) a successful closure with an extreme (~1/1000 year) river discharge accumulating behind the barrier, (3) structural failure, and (4) insufficient height both with extreme storm conditions (10–6 year). The case study confirmed the method's ability to systematically explore promising barrier improvements to adapt to sea level rise, in this case, lowering the susceptibility toward operational failures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信