烹调引起的Kavurma(一种熟肉制品)脂质蛋白氧化

IF 2 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Melike Babaoglu, Nesimi Aktas, Nasit Igci, Seref Ertul
{"title":"烹调引起的Kavurma(一种熟肉制品)脂质蛋白氧化","authors":"Melike Babaoglu,&nbsp;Nesimi Aktas,&nbsp;Nasit Igci,&nbsp;Seref Ertul","doi":"10.1155/jfpp/3824071","DOIUrl":null,"url":null,"abstract":"<p>Optimizing the nutritional quality of cooked meat requires a better understanding of the mechanisms responsible for lipid–protein changes caused by cooking. In this study, the aim was to determine the levels of protein–lipid oxidation that could occur during the kavurma production process. For this purpose, cooking was performed at 100°C for 30, 60, 90, and 120 min, and protein oxidation was determined by measuring carbonyl content, sulfhydryl (S-H) group levels, and Schiff base formation, while lipid oxidation was assessed by measuring thiobarbituric acid reactive substances (TBARS), peroxide, p-anisidine, and free fatty acid (FFA) values. Also, the changes in protein structure were identified by Fourier-transform infrared spectroscopy (FT-IR). Carbonyl, formation of Schiff bases, peroxide, p-anisidine, and FFA values significantly increased throughout the cooking time (<i>p</i> &lt; 0.05). TBARS values showed a significant increase within the first 30 min, followed by a decrease. The level of S-H groups significantly decreased with increasing cooking time (<i>p</i> &lt; 0.05). FT-IR analysis of the myofibrillar extract revealed 13 major peaks, with peak areas decreasing depending on the cooking time. Analysis of the secondary structure indicated higher relative intensities of <i>α</i>-helix and random coil up to 90 min of cooking time. Results indicate that protein–lipid oxidation is dependent on the cooking time, which point out to an effect on the nutritional quality of proteins and lipids in kavurma. Also, these results not only enhance our comprehension of the complex relationship between cooking time and product quality but also present encouraging prospects for fostering healthier and safer cooking methods.</p>","PeriodicalId":15717,"journal":{"name":"Journal of Food Processing and Preservation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfpp/3824071","citationCount":"0","resultStr":"{\"title\":\"Cooking-Induced Lipid–Protein Oxidation in Kavurma (a Cooked Meat Product)\",\"authors\":\"Melike Babaoglu,&nbsp;Nesimi Aktas,&nbsp;Nasit Igci,&nbsp;Seref Ertul\",\"doi\":\"10.1155/jfpp/3824071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optimizing the nutritional quality of cooked meat requires a better understanding of the mechanisms responsible for lipid–protein changes caused by cooking. In this study, the aim was to determine the levels of protein–lipid oxidation that could occur during the kavurma production process. For this purpose, cooking was performed at 100°C for 30, 60, 90, and 120 min, and protein oxidation was determined by measuring carbonyl content, sulfhydryl (S-H) group levels, and Schiff base formation, while lipid oxidation was assessed by measuring thiobarbituric acid reactive substances (TBARS), peroxide, p-anisidine, and free fatty acid (FFA) values. Also, the changes in protein structure were identified by Fourier-transform infrared spectroscopy (FT-IR). Carbonyl, formation of Schiff bases, peroxide, p-anisidine, and FFA values significantly increased throughout the cooking time (<i>p</i> &lt; 0.05). TBARS values showed a significant increase within the first 30 min, followed by a decrease. The level of S-H groups significantly decreased with increasing cooking time (<i>p</i> &lt; 0.05). FT-IR analysis of the myofibrillar extract revealed 13 major peaks, with peak areas decreasing depending on the cooking time. Analysis of the secondary structure indicated higher relative intensities of <i>α</i>-helix and random coil up to 90 min of cooking time. Results indicate that protein–lipid oxidation is dependent on the cooking time, which point out to an effect on the nutritional quality of proteins and lipids in kavurma. Also, these results not only enhance our comprehension of the complex relationship between cooking time and product quality but also present encouraging prospects for fostering healthier and safer cooking methods.</p>\",\"PeriodicalId\":15717,\"journal\":{\"name\":\"Journal of Food Processing and Preservation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfpp/3824071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Processing and Preservation\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/jfpp/3824071\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Processing and Preservation","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfpp/3824071","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

优化熟肉的营养质量需要更好地了解烹饪引起的脂质蛋白变化的机制。在这项研究中,目的是确定在kavurma生产过程中可能发生的蛋白质-脂质氧化水平。为此,在100°C下进行30、60、90和120分钟的烹饪,通过测量羰基含量、巯基(S-H)基团水平和希夫碱形成来确定蛋白质氧化,通过测量硫代巴比妥酸活性物质(TBARS)、过氧化物、对茴香胺和游离脂肪酸(FFA)值来评估脂质氧化。利用傅里叶变换红外光谱(FT-IR)分析了蛋白质结构的变化。羰基、席夫碱的形成、过氧化物、对茴香胺和FFA值在整个烹饪时间内显著增加(p <;0.05)。TBARS值在前30分钟内显著升高,随后下降。S-H组水平随蒸煮时间的延长而显著降低(p <;0.05)。肌纤维提取物的FT-IR分析显示13个主要峰,峰面积随蒸煮时间的增加而减少。二级结构分析表明,在蒸煮90 min时α-螺旋和随机螺旋的相对强度较高。结果表明,蛋白质-脂质氧化与蒸煮时间有关,从而影响了kavurma中蛋白质和脂质的营养品质。此外,这些结果不仅增强了我们对烹饪时间和产品质量之间复杂关系的理解,而且为培养更健康、更安全的烹饪方法提供了令人鼓舞的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cooking-Induced Lipid–Protein Oxidation in Kavurma (a Cooked Meat Product)

Cooking-Induced Lipid–Protein Oxidation in Kavurma (a Cooked Meat Product)

Optimizing the nutritional quality of cooked meat requires a better understanding of the mechanisms responsible for lipid–protein changes caused by cooking. In this study, the aim was to determine the levels of protein–lipid oxidation that could occur during the kavurma production process. For this purpose, cooking was performed at 100°C for 30, 60, 90, and 120 min, and protein oxidation was determined by measuring carbonyl content, sulfhydryl (S-H) group levels, and Schiff base formation, while lipid oxidation was assessed by measuring thiobarbituric acid reactive substances (TBARS), peroxide, p-anisidine, and free fatty acid (FFA) values. Also, the changes in protein structure were identified by Fourier-transform infrared spectroscopy (FT-IR). Carbonyl, formation of Schiff bases, peroxide, p-anisidine, and FFA values significantly increased throughout the cooking time (p < 0.05). TBARS values showed a significant increase within the first 30 min, followed by a decrease. The level of S-H groups significantly decreased with increasing cooking time (p < 0.05). FT-IR analysis of the myofibrillar extract revealed 13 major peaks, with peak areas decreasing depending on the cooking time. Analysis of the secondary structure indicated higher relative intensities of α-helix and random coil up to 90 min of cooking time. Results indicate that protein–lipid oxidation is dependent on the cooking time, which point out to an effect on the nutritional quality of proteins and lipids in kavurma. Also, these results not only enhance our comprehension of the complex relationship between cooking time and product quality but also present encouraging prospects for fostering healthier and safer cooking methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
12.00%
发文量
1000
审稿时长
2.3 months
期刊介绍: The journal presents readers with the latest research, knowledge, emerging technologies, and advances in food processing and preservation. Encompassing chemical, physical, quality, and engineering properties of food materials, the Journal of Food Processing and Preservation provides a balance between fundamental chemistry and engineering principles and applicable food processing and preservation technologies. This is the only journal dedicated to publishing both fundamental and applied research relating to food processing and preservation, benefiting the research, commercial, and industrial communities. It publishes research articles directed at the safe preservation and successful consumer acceptance of unique, innovative, non-traditional international or domestic foods. In addition, the journal features important discussions of current economic and regulatory policies and their effects on the safe and quality processing and preservation of a wide array of foods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信