Martin Orság, Athira Lekshmi Mohandas Sandhya, Xianxian Xie, Jan Kučera, Miquel Gamon Rodriguez, Yurii Yakovlev, Milan Dopita, Iva Matolínová, Ivan Khalakhan
{"title":"质子交换膜燃料电池复合调谐磁控共溅射双金属催化剂的活性-稳定性关系","authors":"Martin Orság, Athira Lekshmi Mohandas Sandhya, Xianxian Xie, Jan Kučera, Miquel Gamon Rodriguez, Yurii Yakovlev, Milan Dopita, Iva Matolínová, Ivan Khalakhan","doi":"10.1002/fuce.202400095","DOIUrl":null,"url":null,"abstract":"<p>In the present study, magnetron-sputtered Pt<i><sub>x</sub></i>M<sub>100−</sub><i><sub>x</sub></i> (M = Co, Cu, and Y; <i>x</i> = 25, 50, 75, and 100) bimetallic alloys were investigated as PEMFC cathodes. Accurate composition and layer thickness control enabled a systematic study of the correlation between the alloy composition, its activity, and stability. The catalysts underwent thorough characterization, employing a diverse portfolio of characterization techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and cyclic voltammetry. The activity of all investigated alloys was tested directly in a fuel cell device, whereas stability was assessed through potentiodynamic cycling in a half-cell. The activity–stability index, considering experimental results for both activity and stability, was calculated and compared for all investigated catalysts. All alloys exhibited a volcano-type trend in the activity–stability index as a function of the concentration of the alloying element with maxima observed for Pt<sub>50</sub>Co<sub>50</sub>, Pt<sub>50</sub>Cu<sub>50</sub>, and Pt<sub>75</sub>Y<sub>25</sub> for respective alloys, surpassing that of monometallic platinum. Overall, Pt<sub>50</sub>Co<sub>50</sub> emerged as a catalyst with the highest activity–stability ratio.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400095","citationCount":"0","resultStr":"{\"title\":\"Activity–Stability Relationship in Compositionally Tuned Magnetron Co-Sputtered Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells\",\"authors\":\"Martin Orság, Athira Lekshmi Mohandas Sandhya, Xianxian Xie, Jan Kučera, Miquel Gamon Rodriguez, Yurii Yakovlev, Milan Dopita, Iva Matolínová, Ivan Khalakhan\",\"doi\":\"10.1002/fuce.202400095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present study, magnetron-sputtered Pt<i><sub>x</sub></i>M<sub>100−</sub><i><sub>x</sub></i> (M = Co, Cu, and Y; <i>x</i> = 25, 50, 75, and 100) bimetallic alloys were investigated as PEMFC cathodes. Accurate composition and layer thickness control enabled a systematic study of the correlation between the alloy composition, its activity, and stability. The catalysts underwent thorough characterization, employing a diverse portfolio of characterization techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and cyclic voltammetry. The activity of all investigated alloys was tested directly in a fuel cell device, whereas stability was assessed through potentiodynamic cycling in a half-cell. The activity–stability index, considering experimental results for both activity and stability, was calculated and compared for all investigated catalysts. All alloys exhibited a volcano-type trend in the activity–stability index as a function of the concentration of the alloying element with maxima observed for Pt<sub>50</sub>Co<sub>50</sub>, Pt<sub>50</sub>Cu<sub>50</sub>, and Pt<sub>75</sub>Y<sub>25</sub> for respective alloys, surpassing that of monometallic platinum. Overall, Pt<sub>50</sub>Co<sub>50</sub> emerged as a catalyst with the highest activity–stability ratio.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400095\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,磁控溅射PtxM100−x (M = Co, Cu, and Y;x = 25、50、75和100)双金属合金作为PEMFC阴极进行了研究。精确的成分和层厚控制使得系统地研究了合金成分、活性和稳定性之间的关系。催化剂进行了全面的表征,采用了多种表征技术,如扫描电子显微镜、能量色散x射线光谱、x射线光电子光谱、x射线衍射和循环伏安法。所有合金的活性都直接在燃料电池装置中测试,而稳定性则通过半电池中的动电位循环来评估。考虑活性和稳定性的实验结果,计算并比较了所有催化剂的活性-稳定性指数。所有合金的活度-稳定性指数随合金元素浓度的变化均呈火山型趋势,其中Pt50Co50、Pt50Cu50和Pt75Y25均达到最大值,超过了单金属铂。总的来说,Pt50Co50是活性稳定比最高的催化剂。
Activity–Stability Relationship in Compositionally Tuned Magnetron Co-Sputtered Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells
In the present study, magnetron-sputtered PtxM100−x (M = Co, Cu, and Y; x = 25, 50, 75, and 100) bimetallic alloys were investigated as PEMFC cathodes. Accurate composition and layer thickness control enabled a systematic study of the correlation between the alloy composition, its activity, and stability. The catalysts underwent thorough characterization, employing a diverse portfolio of characterization techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and cyclic voltammetry. The activity of all investigated alloys was tested directly in a fuel cell device, whereas stability was assessed through potentiodynamic cycling in a half-cell. The activity–stability index, considering experimental results for both activity and stability, was calculated and compared for all investigated catalysts. All alloys exhibited a volcano-type trend in the activity–stability index as a function of the concentration of the alloying element with maxima observed for Pt50Co50, Pt50Cu50, and Pt75Y25 for respective alloys, surpassing that of monometallic platinum. Overall, Pt50Co50 emerged as a catalyst with the highest activity–stability ratio.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.