{"title":"局部-非局部混合算子驱动的半线性抛物方程的全局解","authors":"Stefano Biagi, Fabio Punzo, Eugenio Vecchi","doi":"10.1112/blms.13196","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local–nonlocal operator <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>+</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$\\mathcal {L}= -\\Delta +(-\\Delta)^s$</annotation>\n </semantics></math>, with a power-like source term. We show that the so-called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"265-284"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13196","citationCount":"0","resultStr":"{\"title\":\"Global solutions to semilinear parabolic equations driven by mixed local–nonlocal operators\",\"authors\":\"Stefano Biagi, Fabio Punzo, Eugenio Vecchi\",\"doi\":\"10.1112/blms.13196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local–nonlocal operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>=</mo>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>+</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathcal {L}= -\\\\Delta +(-\\\\Delta)^s$</annotation>\\n </semantics></math>, with a power-like source term. We show that the so-called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"265-284\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13196\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13196\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13196","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global solutions to semilinear parabolic equations driven by mixed local–nonlocal operators
We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local–nonlocal operator , with a power-like source term. We show that the so-called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.