Troy A. Laidlow, Erin S. Johnston, Ruth N. Zadoks, Michael Walsh, Mafalda Viana, Kerrie E. Wiley, Balbir B. Singh, Francesco Baldini, Himani Dhanze, Cameron Webb, Victoria J. Brookes
{"title":"日本脑炎病毒传播模型范围审查","authors":"Troy A. Laidlow, Erin S. Johnston, Ruth N. Zadoks, Michael Walsh, Mafalda Viana, Kerrie E. Wiley, Balbir B. Singh, Francesco Baldini, Himani Dhanze, Cameron Webb, Victoria J. Brookes","doi":"10.1155/tbed/9880670","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Japanese encephalitis virus (JEV) causes ~100,000 clinical cases and 25,000 deaths annually worldwide, mainly in Southeast Asia and the Western Pacific and mostly in children. JEV is transmitted to humans through the bite of mosquitoes that have fed on competent hosts. Abiotic factors, such as seasonal rainfall, influence transmission. Transmission models have an important role in understanding disease dynamics and developing prevention and control strategies to limit the impact of infectious diseases. Our goal was to investigate how transmission models capture JEV infection dynamics and their role in predicting and controlling infection. This was achieved by identifying published JEV transmission models, describing their features and identifying their limitations, to guide future modelling. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)-guided scoping review of peer-reviewed JEV transmission models was conducted. Databases searched included PubMed, ProQuest, Scopus, Web of Science and Google Scholar. Of the 881 full-text papers available in English, 29 were eligible for data extraction. Publication year ranged from 1975 to 2023. The median number of host populations represented in each model was 3 (range: 1–8; usually humans, mosquitoes and pigs). Most (72% [<i>n</i> = 21]) models were deterministic, using ordinary differential equations to describe transmission. Ten models were applied (representing a real JEV transmission setting) and validated with field data, while the remaining 19 models were theoretical. In the applied models, data from only a small proportion of countries in Southeast Asia and the Western Pacific were used. Limitations included gaps in knowledge of local JEV epidemiology, vector attributes and the impact of prevention and control strategies, along with a lack of model validation with field data. The lack and limitations of models highlight that further research to understand JEV epidemiology is needed and that there is opportunity to develop and implement applied models to improve control strategies for at-risk populations of animals and humans.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2025 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/tbed/9880670","citationCount":"0","resultStr":"{\"title\":\"Scoping Review of Japanese Encephalitis Virus Transmission Models\",\"authors\":\"Troy A. Laidlow, Erin S. Johnston, Ruth N. Zadoks, Michael Walsh, Mafalda Viana, Kerrie E. Wiley, Balbir B. Singh, Francesco Baldini, Himani Dhanze, Cameron Webb, Victoria J. Brookes\",\"doi\":\"10.1155/tbed/9880670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Japanese encephalitis virus (JEV) causes ~100,000 clinical cases and 25,000 deaths annually worldwide, mainly in Southeast Asia and the Western Pacific and mostly in children. JEV is transmitted to humans through the bite of mosquitoes that have fed on competent hosts. Abiotic factors, such as seasonal rainfall, influence transmission. Transmission models have an important role in understanding disease dynamics and developing prevention and control strategies to limit the impact of infectious diseases. Our goal was to investigate how transmission models capture JEV infection dynamics and their role in predicting and controlling infection. This was achieved by identifying published JEV transmission models, describing their features and identifying their limitations, to guide future modelling. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)-guided scoping review of peer-reviewed JEV transmission models was conducted. Databases searched included PubMed, ProQuest, Scopus, Web of Science and Google Scholar. Of the 881 full-text papers available in English, 29 were eligible for data extraction. Publication year ranged from 1975 to 2023. The median number of host populations represented in each model was 3 (range: 1–8; usually humans, mosquitoes and pigs). Most (72% [<i>n</i> = 21]) models were deterministic, using ordinary differential equations to describe transmission. Ten models were applied (representing a real JEV transmission setting) and validated with field data, while the remaining 19 models were theoretical. In the applied models, data from only a small proportion of countries in Southeast Asia and the Western Pacific were used. Limitations included gaps in knowledge of local JEV epidemiology, vector attributes and the impact of prevention and control strategies, along with a lack of model validation with field data. The lack and limitations of models highlight that further research to understand JEV epidemiology is needed and that there is opportunity to develop and implement applied models to improve control strategies for at-risk populations of animals and humans.</p>\\n </div>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/tbed/9880670\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/tbed/9880670\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/tbed/9880670","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
摘要
日本脑炎病毒(JEV)每年在全世界造成约10万例临床病例和2.5万例死亡,主要发生在东南亚和西太平洋,主要是儿童。乙脑病毒通过以有能力的宿主为食的蚊子叮咬传播给人类。非生物因素,如季节性降雨,影响传播。传播模型在了解疾病动态和制定预防和控制策略以限制传染病的影响方面具有重要作用。我们的目标是研究传播模型如何捕捉乙脑病毒感染动态及其在预测和控制感染中的作用。这是通过确定已发表的乙脑病毒传播模型,描述其特征并确定其局限性来实现的,以指导未来的建模。对同行评议的乙脑传播模型进行了系统评价和荟萃分析扩展范围评价(PRISMA-ScR)指导的范围评价。检索的数据库包括PubMed、ProQuest、Scopus、Web of Science和b谷歌Scholar。在881篇英文全文论文中,29篇符合数据提取条件。出版年份从1975年到2023年。每个模型中所代表的宿主种群的中位数为3(范围:1-8;通常是人、蚊子和猪)。大多数(72% [n = 21])模型是确定性的,使用常微分方程来描述传播。应用了10个模型(代表了真实的JEV传播环境)并通过现场数据进行了验证,其余19个模型为理论模型。在应用的模型中,仅使用了东南亚和西太平洋地区一小部分国家的数据。局限性包括对当地乙脑病毒流行病学、媒介属性和预防和控制策略影响的知识存在差距,以及缺乏现场数据的模型验证。模型的缺乏和局限性突出表明,需要进一步研究以了解乙脑病毒流行病学,并有机会开发和实施应用模型,以改进对高危动物和人类群体的控制策略。
Scoping Review of Japanese Encephalitis Virus Transmission Models
Japanese encephalitis virus (JEV) causes ~100,000 clinical cases and 25,000 deaths annually worldwide, mainly in Southeast Asia and the Western Pacific and mostly in children. JEV is transmitted to humans through the bite of mosquitoes that have fed on competent hosts. Abiotic factors, such as seasonal rainfall, influence transmission. Transmission models have an important role in understanding disease dynamics and developing prevention and control strategies to limit the impact of infectious diseases. Our goal was to investigate how transmission models capture JEV infection dynamics and their role in predicting and controlling infection. This was achieved by identifying published JEV transmission models, describing their features and identifying their limitations, to guide future modelling. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)-guided scoping review of peer-reviewed JEV transmission models was conducted. Databases searched included PubMed, ProQuest, Scopus, Web of Science and Google Scholar. Of the 881 full-text papers available in English, 29 were eligible for data extraction. Publication year ranged from 1975 to 2023. The median number of host populations represented in each model was 3 (range: 1–8; usually humans, mosquitoes and pigs). Most (72% [n = 21]) models were deterministic, using ordinary differential equations to describe transmission. Ten models were applied (representing a real JEV transmission setting) and validated with field data, while the remaining 19 models were theoretical. In the applied models, data from only a small proportion of countries in Southeast Asia and the Western Pacific were used. Limitations included gaps in knowledge of local JEV epidemiology, vector attributes and the impact of prevention and control strategies, along with a lack of model validation with field data. The lack and limitations of models highlight that further research to understand JEV epidemiology is needed and that there is opportunity to develop and implement applied models to improve control strategies for at-risk populations of animals and humans.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.