使用Cu@CuS@Au NPs纳米笼修饰的纸基免疫装置快速低成本测定前列腺特异性抗原

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Yi Duan, Qi Wu, Jiangtao Lin, Yourong Duan, Qi Wang, Yuanyuan Li
{"title":"使用Cu@CuS@Au NPs纳米笼修饰的纸基免疫装置快速低成本测定前列腺特异性抗原","authors":"Yi Duan,&nbsp;Qi Wu,&nbsp;Jiangtao Lin,&nbsp;Yourong Duan,&nbsp;Qi Wang,&nbsp;Yuanyuan Li","doi":"10.1049/bsb2.12090","DOIUrl":null,"url":null,"abstract":"<p>In this study, the authors designed a paper-based electrochemical immunodevice modified with copper embedded in copper sulphide hollow nanocages wrapped with Au nanoparticles (Cu@CuS@Au NPs) for the specific detection of prostate-specific antigen (PSA), aiming to advance point-of-care testing. The large specific surface area of Cu@CuS nanocages enables efficient capture of biotin antibodies, leading to the direct amplification of the signal through the inhibition of electron transport in the redox process of Cu, eliminating the need for universal redox electron mediators. Additionally, Au NPs on the surface of Cu@CuS can accelerate charge transfer and conjugate with anti-PSA. The hierarchical morphology and structure of Cu@CuS nanocages were characterised using scanning electron microscopy and transmission electron microscopy. The fabrication process of the immunodevice was monitored using cyclic voltammetry and electrochemical impedance spectroscopy analyses. PSA was sensitively detected using differential pulse voltammetry on this proposed immunodevice within a linear range from 0 to 100 ng/ml (<i>R</i><sup>2</sup> = 0.996), achieving a low detection limit of 0.077 ng/ml. In addition, the practicality of the developed immunosensor has been proven by successfully detecting PSA in human serum samples obtained from clinical settings. The integration of electrochemical sensors and microfluidic devices holds promise for developing cost-effective approaches in clinical immunoassays.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12090","citationCount":"0","resultStr":"{\"title\":\"Fast and low-cost determination of prostate-specific antigen using paper-based immunodevice modified with Cu@CuS@Au NPs nanocages\",\"authors\":\"Yi Duan,&nbsp;Qi Wu,&nbsp;Jiangtao Lin,&nbsp;Yourong Duan,&nbsp;Qi Wang,&nbsp;Yuanyuan Li\",\"doi\":\"10.1049/bsb2.12090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the authors designed a paper-based electrochemical immunodevice modified with copper embedded in copper sulphide hollow nanocages wrapped with Au nanoparticles (Cu@CuS@Au NPs) for the specific detection of prostate-specific antigen (PSA), aiming to advance point-of-care testing. The large specific surface area of Cu@CuS nanocages enables efficient capture of biotin antibodies, leading to the direct amplification of the signal through the inhibition of electron transport in the redox process of Cu, eliminating the need for universal redox electron mediators. Additionally, Au NPs on the surface of Cu@CuS can accelerate charge transfer and conjugate with anti-PSA. The hierarchical morphology and structure of Cu@CuS nanocages were characterised using scanning electron microscopy and transmission electron microscopy. The fabrication process of the immunodevice was monitored using cyclic voltammetry and electrochemical impedance spectroscopy analyses. PSA was sensitively detected using differential pulse voltammetry on this proposed immunodevice within a linear range from 0 to 100 ng/ml (<i>R</i><sup>2</sup> = 0.996), achieving a low detection limit of 0.077 ng/ml. In addition, the practicality of the developed immunosensor has been proven by successfully detecting PSA in human serum samples obtained from clinical settings. The integration of electrochemical sensors and microfluidic devices holds promise for developing cost-effective approaches in clinical immunoassays.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,作者设计了一种基于纸的电化学免疫装置,该装置将铜嵌入由金纳米颗粒包裹的硫化铜空心纳米笼(Cu@CuS@Au NPs)中,用于前列腺特异性抗原(PSA)的特异性检测,旨在推进护理点检测。Cu@CuS纳米笼的大比表面积能够有效捕获生物素抗体,从而通过抑制Cu氧化还原过程中的电子传递来直接放大信号,从而消除了对通用氧化还原电子介质的需求。此外,Cu@CuS表面的Au NPs可以加速电荷转移并与抗psa结合。利用扫描电镜和透射电镜对Cu@CuS纳米笼的分层形貌和结构进行了表征。利用循环伏安法和电化学阻抗谱法对免疫装置的制备过程进行了监测。采用差分脉冲伏安法在0 ~ 100 ng/ml线性范围内(R2 = 0.996)对PSA进行了灵敏检测,检测限低至0.077 ng/ml。此外,开发的免疫传感器的实用性已经通过成功检测从临床环境中获得的人类血清样本中的PSA证明。电化学传感器和微流控装置的集成为开发具有成本效益的临床免疫分析方法提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast and low-cost determination of prostate-specific antigen using paper-based immunodevice modified with Cu@CuS@Au NPs nanocages

Fast and low-cost determination of prostate-specific antigen using paper-based immunodevice modified with Cu@CuS@Au NPs nanocages

In this study, the authors designed a paper-based electrochemical immunodevice modified with copper embedded in copper sulphide hollow nanocages wrapped with Au nanoparticles (Cu@CuS@Au NPs) for the specific detection of prostate-specific antigen (PSA), aiming to advance point-of-care testing. The large specific surface area of Cu@CuS nanocages enables efficient capture of biotin antibodies, leading to the direct amplification of the signal through the inhibition of electron transport in the redox process of Cu, eliminating the need for universal redox electron mediators. Additionally, Au NPs on the surface of Cu@CuS can accelerate charge transfer and conjugate with anti-PSA. The hierarchical morphology and structure of Cu@CuS nanocages were characterised using scanning electron microscopy and transmission electron microscopy. The fabrication process of the immunodevice was monitored using cyclic voltammetry and electrochemical impedance spectroscopy analyses. PSA was sensitively detected using differential pulse voltammetry on this proposed immunodevice within a linear range from 0 to 100 ng/ml (R2 = 0.996), achieving a low detection limit of 0.077 ng/ml. In addition, the practicality of the developed immunosensor has been proven by successfully detecting PSA in human serum samples obtained from clinical settings. The integration of electrochemical sensors and microfluidic devices holds promise for developing cost-effective approaches in clinical immunoassays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信