利用核顶钍同位素计算含氧远洋粘土的沉积速率

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Kassandra M. Costa, Frantz Ossa Ossa, Ann Dunlea, Frank J. Pavia, Logan Tegler, Maureen Auro, Morten Andersen, Sune G. Nielsen
{"title":"利用核顶钍同位素计算含氧远洋粘土的沉积速率","authors":"Kassandra M. Costa,&nbsp;Frantz Ossa Ossa,&nbsp;Ann Dunlea,&nbsp;Frank J. Pavia,&nbsp;Logan Tegler,&nbsp;Maureen Auro,&nbsp;Morten Andersen,&nbsp;Sune G. Nielsen","doi":"10.1029/2024GC011717","DOIUrl":null,"url":null,"abstract":"<p>Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site-specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (<sup>230</sup>Th/<sup>232</sup>Th) to seawater dissolved <sup>230</sup>Th/<sup>232</sup>Th in a suite of deep (&gt;3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial <sup>230</sup>Th/<sup>232</sup>Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium-based SRs were then combined with estimates from the total sediment thickness on ocean crust and non-lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011717","citationCount":"0","resultStr":"{\"title\":\"Calculating Sedimentation Rates of Oxic Pelagic Clays Using Core Top Thorium Isotopes\",\"authors\":\"Kassandra M. Costa,&nbsp;Frantz Ossa Ossa,&nbsp;Ann Dunlea,&nbsp;Frank J. Pavia,&nbsp;Logan Tegler,&nbsp;Maureen Auro,&nbsp;Morten Andersen,&nbsp;Sune G. Nielsen\",\"doi\":\"10.1029/2024GC011717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site-specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (<sup>230</sup>Th/<sup>232</sup>Th) to seawater dissolved <sup>230</sup>Th/<sup>232</sup>Th in a suite of deep (&gt;3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial <sup>230</sup>Th/<sup>232</sup>Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium-based SRs were then combined with estimates from the total sediment thickness on ocean crust and non-lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011717\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011717","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

含氧远洋粘土是海底沉积物的重要组成部分,由于其对生物地球化学重要金属的亲和力和积累,可以保存有关过去海洋化学的宝贵信息。我们提出了一种计算地点特定沉积速率(SRs)的新方法,通过比较自生沉积物钍同位素组成(230Th/232Th)和海水溶解230Th/232Th在一套深(> 3000 m)远洋岩心位置。我们使用HHAc浸出方案提取自生沉积物部分,主要元素化学(Al, Mn, Fe, Ti)表明,与HCl浸出相比,其受岩石污染的影响较小。为了从海水中提取合适的初始230Th/232Th,测试了四种不同的方法:使用最近的水柱站(方法1和2)或区域平均剖面(方法3和4),并使用最底部剖面测量(方法1和3)或剖面线性回归并外推到海底(方法2和4)。方法3在重建以前发表的北太平洋远洋粘土的SRs方面优于其他方法。然后将新的基于钍的SRs与海洋地壳总沉积厚度和非岩石性钴积累的估计相结合,以确定氧远洋粘土SRs的最佳估计。太平洋的SR最低(中值0.28 cm/kyr),而大西洋较高(中值0.46 cm/kyr),印度洋最高(中值0.75 cm/kyr)。这些新的估计与预期的沉积空间格局一致,但它们从现有的网格化SR图中向下修正了绝对SR值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Calculating Sedimentation Rates of Oxic Pelagic Clays Using Core Top Thorium Isotopes

Calculating Sedimentation Rates of Oxic Pelagic Clays Using Core Top Thorium Isotopes

Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site-specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (230Th/232Th) to seawater dissolved 230Th/232Th in a suite of deep (>3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial 230Th/232Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium-based SRs were then combined with estimates from the total sediment thickness on ocean crust and non-lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信