氮化硅填料表面功能化对TIMs热力学性能的影响

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zaifu Jin, JinHong Li, Jiaqing Zhao, Yixuan Ge
{"title":"氮化硅填料表面功能化对TIMs热力学性能的影响","authors":"Zaifu Jin,&nbsp;JinHong Li,&nbsp;Jiaqing Zhao,&nbsp;Yixuan Ge","doi":"10.1002/admi.202400503","DOIUrl":null,"url":null,"abstract":"<p>Thermal interface materials (TIMs), which consist of polymers and thermally conductive fillers, are crucial for improving heat dissipation. This study examines the impact of surface functionalization of Si₃N₄ thermal conductive fillers on the performance of TIMs. Si₃N₄ fillers are modified with silane coupling agents of varying alkyl chain lengths, producing fillers with contact angles ranging from 25° to 151.2°, thereby ensuring enhanced interfacial compatibility with various polymers. The modified fillers are incorporated into three common polymers—silica gel (SG), epoxy resin (EP), and polyurethane (PU)—to fabricate TIMs. When the contact angle of Si₃N₄ fillers is 73.3°, they demonstrate excellent interfacial compatibility with EP, leading to a 54.37% increase in thermal conductivity and a 162.75% enhancement in elongation at break for the TIM. At a contact angle of 132.7°, the TIMs prepared with SG exhibit an 86.36% increase in thermal conductivity and a 23.88% increase in elongation at break. Given that the original Si₃N₄ already possesses adequate interfacial compatibility with PU, no further modification is required. These findings offer valuable insights for future research aimed at optimizing Si₃N₄ fillers and TIMs to achieve enhanced thermal and mechanical properties.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400503","citationCount":"0","resultStr":"{\"title\":\"Effect of Surface Functionalization of Si3N4 Fillers on Thermal and Mechanical Properties of TIMs\",\"authors\":\"Zaifu Jin,&nbsp;JinHong Li,&nbsp;Jiaqing Zhao,&nbsp;Yixuan Ge\",\"doi\":\"10.1002/admi.202400503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermal interface materials (TIMs), which consist of polymers and thermally conductive fillers, are crucial for improving heat dissipation. This study examines the impact of surface functionalization of Si₃N₄ thermal conductive fillers on the performance of TIMs. Si₃N₄ fillers are modified with silane coupling agents of varying alkyl chain lengths, producing fillers with contact angles ranging from 25° to 151.2°, thereby ensuring enhanced interfacial compatibility with various polymers. The modified fillers are incorporated into three common polymers—silica gel (SG), epoxy resin (EP), and polyurethane (PU)—to fabricate TIMs. When the contact angle of Si₃N₄ fillers is 73.3°, they demonstrate excellent interfacial compatibility with EP, leading to a 54.37% increase in thermal conductivity and a 162.75% enhancement in elongation at break for the TIM. At a contact angle of 132.7°, the TIMs prepared with SG exhibit an 86.36% increase in thermal conductivity and a 23.88% increase in elongation at break. Given that the original Si₃N₄ already possesses adequate interfacial compatibility with PU, no further modification is required. These findings offer valuable insights for future research aimed at optimizing Si₃N₄ fillers and TIMs to achieve enhanced thermal and mechanical properties.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400503\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400503\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400503","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热界面材料(TIMs)由聚合物和导热填料组成,是改善散热的关键。本文研究了Si₃N₄导热填料的表面功能化对TIMs性能的影响。采用不同烷基链长的硅烷偶联剂对Si₃N₄填料进行改性,得到的填料的接触角范围为25°~ 151.2°,从而提高了与各种聚合物的界面相容性。将改性填料掺入三种常见的聚合物——硅胶(SG)、环氧树脂(EP)和聚氨酯(PU)中,制成TIMs。当Si₃N₄填料的接触角为73.3°时,与EP具有良好的界面相容性,TIM的导热系数提高54.37%,断裂伸长率提高162.75%。当接触角为132.7°时,SG制备的TIMs的导热系数提高了86.36%,断裂伸长率提高了23.88%。考虑到原来的Si₃N₄已经与PU具有足够的界面相容性,因此不需要进一步的修改。这些发现为未来的研究提供了有价值的见解,旨在优化Si₃N₄填料和TIMs,以实现增强的热性能和机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Surface Functionalization of Si3N4 Fillers on Thermal and Mechanical Properties of TIMs

Effect of Surface Functionalization of Si3N4 Fillers on Thermal and Mechanical Properties of TIMs

Thermal interface materials (TIMs), which consist of polymers and thermally conductive fillers, are crucial for improving heat dissipation. This study examines the impact of surface functionalization of Si₃N₄ thermal conductive fillers on the performance of TIMs. Si₃N₄ fillers are modified with silane coupling agents of varying alkyl chain lengths, producing fillers with contact angles ranging from 25° to 151.2°, thereby ensuring enhanced interfacial compatibility with various polymers. The modified fillers are incorporated into three common polymers—silica gel (SG), epoxy resin (EP), and polyurethane (PU)—to fabricate TIMs. When the contact angle of Si₃N₄ fillers is 73.3°, they demonstrate excellent interfacial compatibility with EP, leading to a 54.37% increase in thermal conductivity and a 162.75% enhancement in elongation at break for the TIM. At a contact angle of 132.7°, the TIMs prepared with SG exhibit an 86.36% increase in thermal conductivity and a 23.88% increase in elongation at break. Given that the original Si₃N₄ already possesses adequate interfacial compatibility with PU, no further modification is required. These findings offer valuable insights for future research aimed at optimizing Si₃N₄ fillers and TIMs to achieve enhanced thermal and mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信