{"title":"二维有理scft的特征:代数性、镜像对称性和复乘法","authors":"Abhiram Kidambi, Masaki Okada, Taizan Watari","doi":"10.1002/prop.202400161","DOIUrl":null,"url":null,"abstract":"<p>S. Gukov and C. Vafa proposed a characterization of rational <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$N=(1,1)$</annotation>\n </semantics></math> superconformal field theories (SCFTs) in <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$1+1$</annotation>\n </semantics></math> dimensions with Ricci-flat Kähler target spaces in terms of the Hodge structure of the target space, extending an earlier observation by G. Moore. The idea is refined, and a conjectural statement on necessary and sufficient conditions for such SCFTs to be rational is obtained, which is indeed proven to be true in the case the target space is <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>4</mn>\n </msup>\n <annotation>$T^4$</annotation>\n </semantics></math>. In the refined statement, the algebraicity of the geometric data of the target space turns out to be essential, and the Strominger–Yau–Zaslow fibration in the mirror correspondence also plays a vital role.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 1-2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202400161","citationCount":"0","resultStr":"{\"title\":\"Notes on Characterizations of 2d Rational SCFTs: Algebraicity, Mirror Symmetry, and Complex Multiplication\",\"authors\":\"Abhiram Kidambi, Masaki Okada, Taizan Watari\",\"doi\":\"10.1002/prop.202400161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>S. Gukov and C. Vafa proposed a characterization of rational <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N=(1,1)$</annotation>\\n </semantics></math> superconformal field theories (SCFTs) in <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$1+1$</annotation>\\n </semantics></math> dimensions with Ricci-flat Kähler target spaces in terms of the Hodge structure of the target space, extending an earlier observation by G. Moore. The idea is refined, and a conjectural statement on necessary and sufficient conditions for such SCFTs to be rational is obtained, which is indeed proven to be true in the case the target space is <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mn>4</mn>\\n </msup>\\n <annotation>$T^4$</annotation>\\n </semantics></math>. In the refined statement, the algebraicity of the geometric data of the target space turns out to be essential, and the Strominger–Yau–Zaslow fibration in the mirror correspondence also plays a vital role.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"73 1-2\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202400161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400161\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400161","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
S. Gukov和C. Vafa提出了有理N = (1)1)$ N=(1,1)$ 1+1$ 1+1$一维ricci平面Kähler目标空间中的超共形场论(SCFTs),根据目标空间的Hodge结构,扩展了G. Moore的早期观察。对这一思想进行了改进,得到了这类scft为有理的充分必要条件的推测性表述,并证明了在目标空间为t4 $T^4$的情况下是正确的。在精炼后的表述中,目标空间几何数据的代数性变得至关重要,镜像对应中的strominger - you - zaslow振荡也起着至关重要的作用。
Notes on Characterizations of 2d Rational SCFTs: Algebraicity, Mirror Symmetry, and Complex Multiplication
S. Gukov and C. Vafa proposed a characterization of rational superconformal field theories (SCFTs) in dimensions with Ricci-flat Kähler target spaces in terms of the Hodge structure of the target space, extending an earlier observation by G. Moore. The idea is refined, and a conjectural statement on necessary and sufficient conditions for such SCFTs to be rational is obtained, which is indeed proven to be true in the case the target space is . In the refined statement, the algebraicity of the geometric data of the target space turns out to be essential, and the Strominger–Yau–Zaslow fibration in the mirror correspondence also plays a vital role.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.