Matthew S. Johnson, Charles J. McGill, William H. Green
{"title":"化学动力学机制自动分析中的短暂敏感性","authors":"Matthew S. Johnson, Charles J. McGill, William H. Green","doi":"10.1002/kin.21766","DOIUrl":null,"url":null,"abstract":"<p>Detailed chemical kinetic mechanisms are necessary for resolving many important chemical processes. As the chemistry of smaller molecules has become better grounded and quantum chemistry calculations have become cheaper, kineticists have become interested in constructing progressively larger kinetic mechanisms to model increasingly complex chemical processes. These large kinetic mechanisms prove incredibly difficult to refine and time-consuming to interpret. Traditional sensitivity analysis on a large mechanism can range from inconvenient to practically impossible without special techniques to reduce the computational cost. We first present a new time-local sensitivity analysis we term transitory sensitivity analysis. Transitory sensitivity analysis is demonstrated in an example to accurately identify traditionally sensitive reactions at an 18,000x speed up over traditional sensitivities. By fusing transitory sensitivity analysis with more traditional time-local branching, pathway, and cluster analyses, we develop an algorithm for efficient automatic mechanism analysis. This automatic mechanism analysis at a time point is able to identify the reactions a target is most sensitive to using transitory sensitivity analysis and then propose hypotheses why the reaction might be sensitive using branching, pathway, and cluster analyses. We implement these algorithms within the reaction mechanism simulator (RMS) package, which enables us to report the automatic mechanism analysis results in highly readable text formats and in molecular flux diagrams.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 2","pages":"125-138"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21766","citationCount":"0","resultStr":"{\"title\":\"Transitory sensitivity in automatic chemical kinetic mechanism analysis\",\"authors\":\"Matthew S. Johnson, Charles J. McGill, William H. Green\",\"doi\":\"10.1002/kin.21766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detailed chemical kinetic mechanisms are necessary for resolving many important chemical processes. As the chemistry of smaller molecules has become better grounded and quantum chemistry calculations have become cheaper, kineticists have become interested in constructing progressively larger kinetic mechanisms to model increasingly complex chemical processes. These large kinetic mechanisms prove incredibly difficult to refine and time-consuming to interpret. Traditional sensitivity analysis on a large mechanism can range from inconvenient to practically impossible without special techniques to reduce the computational cost. We first present a new time-local sensitivity analysis we term transitory sensitivity analysis. Transitory sensitivity analysis is demonstrated in an example to accurately identify traditionally sensitive reactions at an 18,000x speed up over traditional sensitivities. By fusing transitory sensitivity analysis with more traditional time-local branching, pathway, and cluster analyses, we develop an algorithm for efficient automatic mechanism analysis. This automatic mechanism analysis at a time point is able to identify the reactions a target is most sensitive to using transitory sensitivity analysis and then propose hypotheses why the reaction might be sensitive using branching, pathway, and cluster analyses. We implement these algorithms within the reaction mechanism simulator (RMS) package, which enables us to report the automatic mechanism analysis results in highly readable text formats and in molecular flux diagrams.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"57 2\",\"pages\":\"125-138\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21766\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21766\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21766","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Transitory sensitivity in automatic chemical kinetic mechanism analysis
Detailed chemical kinetic mechanisms are necessary for resolving many important chemical processes. As the chemistry of smaller molecules has become better grounded and quantum chemistry calculations have become cheaper, kineticists have become interested in constructing progressively larger kinetic mechanisms to model increasingly complex chemical processes. These large kinetic mechanisms prove incredibly difficult to refine and time-consuming to interpret. Traditional sensitivity analysis on a large mechanism can range from inconvenient to practically impossible without special techniques to reduce the computational cost. We first present a new time-local sensitivity analysis we term transitory sensitivity analysis. Transitory sensitivity analysis is demonstrated in an example to accurately identify traditionally sensitive reactions at an 18,000x speed up over traditional sensitivities. By fusing transitory sensitivity analysis with more traditional time-local branching, pathway, and cluster analyses, we develop an algorithm for efficient automatic mechanism analysis. This automatic mechanism analysis at a time point is able to identify the reactions a target is most sensitive to using transitory sensitivity analysis and then propose hypotheses why the reaction might be sensitive using branching, pathway, and cluster analyses. We implement these algorithms within the reaction mechanism simulator (RMS) package, which enables us to report the automatic mechanism analysis results in highly readable text formats and in molecular flux diagrams.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.