{"title":"关于退化的(p,q)$ (p,q)$ -拉普拉斯方程对应于一个逆谱问题","authors":"Yavdat Il'yasov, Nur Valeev","doi":"10.1112/blms.13192","DOIUrl":null,"url":null,"abstract":"<p>A method of solving nonlinear boundary value problems involving <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,q)$</annotation>\n </semantics></math>-Laplace with unbounded measurable coefficients is introduced through the inverse optimal problem approach. The existence, uniqueness, and stability of the nonnegative weak solution to the nonlinear equations of the form\n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"218-235"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On degenerate \\n \\n \\n (\\n p\\n ,\\n q\\n )\\n \\n $(p,q)$\\n -Laplace equations corresponding to an inverse spectral problem\",\"authors\":\"Yavdat Il'yasov, Nur Valeev\",\"doi\":\"10.1112/blms.13192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A method of solving nonlinear boundary value problems involving <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(p,q)$</annotation>\\n </semantics></math>-Laplace with unbounded measurable coefficients is introduced through the inverse optimal problem approach. The existence, uniqueness, and stability of the nonnegative weak solution to the nonlinear equations of the form\\n\\n </p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"218-235\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13192\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On degenerate
(
p
,
q
)
$(p,q)$
-Laplace equations corresponding to an inverse spectral problem
A method of solving nonlinear boundary value problems involving -Laplace with unbounded measurable coefficients is introduced through the inverse optimal problem approach. The existence, uniqueness, and stability of the nonnegative weak solution to the nonlinear equations of the form